Accuracy estimation and comparative analysis
Numerical methods and programming, Tome 11 (2010) no. 1, pp. 137-143.

Voir la notice de l'article provenant de la source Math-Net.Ru

An actual order of accuracy for several known numerical methods is studied for the case of hyperbolic-law discontinuous solutions. The approach in use is based on the convergence analysis of numerical solutions with various orders of differentiation. A wide class of difference schemes of first to fifth orders is analyzed. A number of recommendations on the application of higher-order finite difference schemes are given.
Keywords: hyperbolic conservation laws; TVD limiters; Runge–Kutta method; Riemann solvers; Godunov-type schemes; third-order scheme.
@article{VMP_2010_11_1_a15,
     author = {A. V. Safronov},
     title = {Accuracy estimation and comparative analysis},
     journal = {Numerical methods and programming},
     pages = {137--143},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMP_2010_11_1_a15/}
}
TY  - JOUR
AU  - A. V. Safronov
TI  - Accuracy estimation and comparative analysis
JO  - Numerical methods and programming
PY  - 2010
SP  - 137
EP  - 143
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMP_2010_11_1_a15/
LA  - ru
ID  - VMP_2010_11_1_a15
ER  - 
%0 Journal Article
%A A. V. Safronov
%T Accuracy estimation and comparative analysis
%J Numerical methods and programming
%D 2010
%P 137-143
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMP_2010_11_1_a15/
%G ru
%F VMP_2010_11_1_a15
A. V. Safronov. Accuracy estimation and comparative analysis. Numerical methods and programming, Tome 11 (2010) no. 1, pp. 137-143. http://geodesic.mathdoc.fr/item/VMP_2010_11_1_a15/