Convergence of a continuous analog of Newton's method for solving nonlinear equations
Numerical methods and programming, Tome 10 (2009) no. 4, pp. 402-407.

Voir la notice de l'article provenant de la source Math-Net.Ru

The influence of the parameter in the continuous analog of Newton's method (CANM) on the convergence and on the convergence rate is studied. A $\tau$-region of convergence of CANM for both scalar equations and equations in a Banach space is obtained. Some almost optimal choices of the parameter are proposed. It is also shown that the well-known higher order convergent iterative methods lead to the CANM with an almost optimal parameter. Several sufficient convergence conditions for these methods are obtained.
Keywords: iterative methods; rate of convergence; Newton-type methods; nonlinear equations.
@article{VMP_2009_10_4_a6,
     author = {T. Zhanlav and O. Chuluunbaatar},
     title = {Convergence of a continuous analog of {Newton's} method for solving nonlinear equations},
     journal = {Numerical methods and programming},
     pages = {402--407},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMP_2009_10_4_a6/}
}
TY  - JOUR
AU  - T. Zhanlav
AU  - O. Chuluunbaatar
TI  - Convergence of a continuous analog of Newton's method for solving nonlinear equations
JO  - Numerical methods and programming
PY  - 2009
SP  - 402
EP  - 407
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMP_2009_10_4_a6/
LA  - ru
ID  - VMP_2009_10_4_a6
ER  - 
%0 Journal Article
%A T. Zhanlav
%A O. Chuluunbaatar
%T Convergence of a continuous analog of Newton's method for solving nonlinear equations
%J Numerical methods and programming
%D 2009
%P 402-407
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMP_2009_10_4_a6/
%G ru
%F VMP_2009_10_4_a6
T. Zhanlav; O. Chuluunbaatar. Convergence of a continuous analog of Newton's method for solving nonlinear equations. Numerical methods and programming, Tome 10 (2009) no. 4, pp. 402-407. http://geodesic.mathdoc.fr/item/VMP_2009_10_4_a6/