On the quaternary coding of cubic structures
Numerical methods and programming, Tome 10 (2009) no. 3, pp. 340-347.

Voir la notice de l'article provenant de la source Math-Net.Ru

The notion of a cubant is introduced on the basis of the bijectivity between the set of all n-digital ternary codes and k-dimensional faces of the unit n-cube. The multiplication operation on cubants is defined on the alphabet $\emptyset 0,1,2$. The algebraic structure (monoid) is considered to efficiently determine a number of metric and topological properties of n-dimensional cubic structures. Some perspectives of the proposed methods are discussed with respect to supercomputing.
Keywords: n-cube; quaternary coding; cubant; monoid; Hausdorff metrics; Hamilton cycle; supercomputing.
@article{VMP_2009_10_3_a8,
     author = {G. G. Ryabov},
     title = {On the quaternary coding of cubic structures},
     journal = {Numerical methods and programming},
     pages = {340--347},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMP_2009_10_3_a8/}
}
TY  - JOUR
AU  - G. G. Ryabov
TI  - On the quaternary coding of cubic structures
JO  - Numerical methods and programming
PY  - 2009
SP  - 340
EP  - 347
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMP_2009_10_3_a8/
LA  - ru
ID  - VMP_2009_10_3_a8
ER  - 
%0 Journal Article
%A G. G. Ryabov
%T On the quaternary coding of cubic structures
%J Numerical methods and programming
%D 2009
%P 340-347
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMP_2009_10_3_a8/
%G ru
%F VMP_2009_10_3_a8
G. G. Ryabov. On the quaternary coding of cubic structures. Numerical methods and programming, Tome 10 (2009) no. 3, pp. 340-347. http://geodesic.mathdoc.fr/item/VMP_2009_10_3_a8/