On the reduction of the nonlinear inverse problem for
Numerical methods and programming, Tome 10 (2009) no. 3, pp. 300-305.

Voir la notice de l'article provenant de la source Math-Net.Ru

A 2D nonlinear inverse problem for the wave equation is studied. Given a family of solutions to the equation, it is required to recover the coefficient at the second time derivative. This inverse problem can be reduced to a uniquely solvable linear integral equation of the first kind. This work was partially supported by the Russian Foundation for Basic Research (project N 09-01-00273a).
Keywords: inverse problem; ill-posed problem; wave equation; linear integral equation; uniqueness.
@article{VMP_2009_10_3_a3,
     author = {M. Yu. Kokurin},
     title = {On the reduction of the nonlinear inverse problem for},
     journal = {Numerical methods and programming},
     pages = {300--305},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMP_2009_10_3_a3/}
}
TY  - JOUR
AU  - M. Yu. Kokurin
TI  - On the reduction of the nonlinear inverse problem for
JO  - Numerical methods and programming
PY  - 2009
SP  - 300
EP  - 305
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMP_2009_10_3_a3/
LA  - ru
ID  - VMP_2009_10_3_a3
ER  - 
%0 Journal Article
%A M. Yu. Kokurin
%T On the reduction of the nonlinear inverse problem for
%J Numerical methods and programming
%D 2009
%P 300-305
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMP_2009_10_3_a3/
%G ru
%F VMP_2009_10_3_a3
M. Yu. Kokurin. On the reduction of the nonlinear inverse problem for. Numerical methods and programming, Tome 10 (2009) no. 3, pp. 300-305. http://geodesic.mathdoc.fr/item/VMP_2009_10_3_a3/