The mapping of integer sets and Euclidean approximations
Numerical methods and programming, Tome 8 (2007) no. 1, pp. 10-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

The development of discrete models for representations of nonconvex parts of $R^3$ space and the solution of routing problems with a metric that approximates the Euclidean metric on these models continue to remain fundamental in the fields of robotics, geoinformatics, computer vision, and designing of VLSI. The paper deals with a lattice-cellular model. The main attention is paid to the mapping of the integer sets $Z^2$, $Z^3$, $Z^4$ onto itself, the construction of a lattice fan under a given accuracy of metric approximation, the decomposition of equidistant graphs, and the combined application of lattice and polyhedral models for a software system of metric-topological constructions.
Keywords: Euclidean metric аpproximation , prime edges, metric neighborhood, lattice fan, topological processor.
Mots-clés : fan triangulation, equidistant graph
@article{VMP_2007_8_1_a2,
     author = {G. G. Ryabov and V. A. Serov},
     title = {The mapping of integer sets and {Euclidean} approximations},
     journal = {Numerical methods and programming},
     pages = {10--19},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMP_2007_8_1_a2/}
}
TY  - JOUR
AU  - G. G. Ryabov
AU  - V. A. Serov
TI  - The mapping of integer sets and Euclidean approximations
JO  - Numerical methods and programming
PY  - 2007
SP  - 10
EP  - 19
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMP_2007_8_1_a2/
LA  - ru
ID  - VMP_2007_8_1_a2
ER  - 
%0 Journal Article
%A G. G. Ryabov
%A V. A. Serov
%T The mapping of integer sets and Euclidean approximations
%J Numerical methods and programming
%D 2007
%P 10-19
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMP_2007_8_1_a2/
%G ru
%F VMP_2007_8_1_a2
G. G. Ryabov; V. A. Serov. The mapping of integer sets and Euclidean approximations. Numerical methods and programming, Tome 8 (2007) no. 1, pp. 10-19. http://geodesic.mathdoc.fr/item/VMP_2007_8_1_a2/