Geometric interpretation of propositional formulas
Numerical methods and programming, Tome 4 (2003) no. 3, pp. 28-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a method for logical analysis based on geometric interpretation of propositional formulas. A logical formula is represented as a unit hypercube in an orthogonal basis of dimension equal to the locality of the formula. It is shown that the analysis of cube intersections in accordance with simple visual criteria allows one to formulate logical axioms. The possibility to construct programming tools for estimating the truth of formulas according to visual perceptions is discussed.
Mots-clés : propositional formulas
Keywords: geometric interpretation, logical analysis, programming tools, logical axioms.
@article{VMP_2003_4_3_a3,
     author = {V. V. Suvorov},
     title = {Geometric interpretation of propositional formulas},
     journal = {Numerical methods and programming},
     pages = {28--33},
     publisher = {mathdoc},
     volume = {4},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMP_2003_4_3_a3/}
}
TY  - JOUR
AU  - V. V. Suvorov
TI  - Geometric interpretation of propositional formulas
JO  - Numerical methods and programming
PY  - 2003
SP  - 28
EP  - 33
VL  - 4
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMP_2003_4_3_a3/
LA  - ru
ID  - VMP_2003_4_3_a3
ER  - 
%0 Journal Article
%A V. V. Suvorov
%T Geometric interpretation of propositional formulas
%J Numerical methods and programming
%D 2003
%P 28-33
%V 4
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMP_2003_4_3_a3/
%G ru
%F VMP_2003_4_3_a3
V. V. Suvorov. Geometric interpretation of propositional formulas. Numerical methods and programming, Tome 4 (2003) no. 3, pp. 28-33. http://geodesic.mathdoc.fr/item/VMP_2003_4_3_a3/