On partial integral representation of linear positive operators
Vladikavkazskij matematičeskij žurnal, Tome 27 (2025) no. 1, pp. 101-111

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we obtain a criterion for partial integral representability of positive $L^\infty$-homogeneous operators acting in ideal spaces of measurable real functions defined on the product of measurable spaces with $\sigma$-finite measures. The result obtained is a counterpart of Bukhvalov's criterion for integral representability of linear operators acting in ideal spaces of measurable real functions defined on measurable spaces with $\sigma$-finite measures. Note that under certain conditions, the above-mentioned Bukhvalov criterion can be derived from the result obtained in this paper. Consequently, the result obtained is a generalization of Bukhvalov's criterion. The main tools of this study are the above-mentioned Bukhvalov criterion and the methods of vector lattice theory.
@article{VMJ_2025_27_1_a7,
     author = {P. R. Orinbaev and B. B. Tasoev},
     title = {On partial integral representation of linear positive operators},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {101--111},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2025},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2025_27_1_a7/}
}
TY  - JOUR
AU  - P. R. Orinbaev
AU  - B. B. Tasoev
TI  - On partial integral representation of linear positive operators
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2025
SP  - 101
EP  - 111
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2025_27_1_a7/
LA  - ru
ID  - VMJ_2025_27_1_a7
ER  - 
%0 Journal Article
%A P. R. Orinbaev
%A B. B. Tasoev
%T On partial integral representation of linear positive operators
%J Vladikavkazskij matematičeskij žurnal
%D 2025
%P 101-111
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2025_27_1_a7/
%G ru
%F VMJ_2025_27_1_a7
P. R. Orinbaev; B. B. Tasoev. On partial integral representation of linear positive operators. Vladikavkazskij matematičeskij žurnal, Tome 27 (2025) no. 1, pp. 101-111. http://geodesic.mathdoc.fr/item/VMJ_2025_27_1_a7/