On partial integral representation of linear positive operators
    
    
  
  
  
      
      
      
        
Vladikavkazskij matematičeskij žurnal, Tome 27 (2025) no. 1, pp. 101-111
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper, we obtain a criterion for partial integral representability of positive $L^\infty$-homogeneous operators acting in ideal spaces of measurable real functions defined on the product of measurable spaces with $\sigma$-finite measures. The result obtained is a counterpart of Bukhvalov's criterion for integral representability of linear operators acting in ideal spaces of measurable real functions defined on measurable spaces with $\sigma$-finite measures. Note that under certain conditions, the above-mentioned Bukhvalov criterion can be derived from the result obtained in this paper. Consequently, the result obtained is a generalization of Bukhvalov's criterion. The main tools of this study are the above-mentioned Bukhvalov criterion and the methods of vector lattice theory.
			
            
            
            
          
        
      @article{VMJ_2025_27_1_a7,
     author = {P. R. Orinbaev and B. B. Tasoev},
     title = {On partial integral representation of linear positive operators},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {101--111},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2025},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2025_27_1_a7/}
}
                      
                      
                    TY - JOUR AU - P. R. Orinbaev AU - B. B. Tasoev TI - On partial integral representation of linear positive operators JO - Vladikavkazskij matematičeskij žurnal PY - 2025 SP - 101 EP - 111 VL - 27 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMJ_2025_27_1_a7/ LA - ru ID - VMJ_2025_27_1_a7 ER -
P. R. Orinbaev; B. B. Tasoev. On partial integral representation of linear positive operators. Vladikavkazskij matematičeskij žurnal, Tome 27 (2025) no. 1, pp. 101-111. http://geodesic.mathdoc.fr/item/VMJ_2025_27_1_a7/
