On multiple zeros of one entire function which is of interest for the theory of inverse problems
Vladikavkazskij matematičeskij žurnal, Tome 27 (2025) no. 1, pp. 5-20

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider complex zeros of one entire function from the theory of linear inverse problems for second-order differential equations. This function of order $ \rho=1/2 $ is elementary, transcendental, and depends in a simple way on a complex parameter $ p\in\mathbb{C}\setminus\{0\}$. It is required to find out whether there are values of $ p $ for which the function has multiple zeros. The question posed has been fully answered. It is shown that there exists a countable set of values $ p=p_n$, for each of which the entire function has not only an infinite number of simple zeros, but also one zero of multiplicity two. A description is given of both the set of such values $p_n$ and the corresponding multiple zeros. Our main result is expressed in terms of roots of the transcendental equation $\mathrm{sh}\, z=z$, the analysis of which is the subject of the final section of the paper. Here we announce new non-asymptotic estimates, applicable to all roots of the equation in the domain $ z\ne 0 $ and giving very precise localization for them. Numerical calculations confirm our analytical conclusions. There are useful connections with the theory of Mittag-Leffler functions and some spectral problems from mathematical physics.
@article{VMJ_2025_27_1_a0,
     author = {M. Almohamed and I. V. Tikhonov and V. B. Sherstyukov},
     title = {On multiple zeros of one entire function which is of interest for the theory of inverse problems},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {5--20},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2025},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2025_27_1_a0/}
}
TY  - JOUR
AU  - M. Almohamed
AU  - I. V. Tikhonov
AU  - V. B. Sherstyukov
TI  - On multiple zeros of one entire function which is of interest for the theory of inverse problems
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2025
SP  - 5
EP  - 20
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2025_27_1_a0/
LA  - ru
ID  - VMJ_2025_27_1_a0
ER  - 
%0 Journal Article
%A M. Almohamed
%A I. V. Tikhonov
%A V. B. Sherstyukov
%T On multiple zeros of one entire function which is of interest for the theory of inverse problems
%J Vladikavkazskij matematičeskij žurnal
%D 2025
%P 5-20
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2025_27_1_a0/
%G ru
%F VMJ_2025_27_1_a0
M. Almohamed; I. V. Tikhonov; V. B. Sherstyukov. On multiple zeros of one entire function which is of interest for the theory of inverse problems. Vladikavkazskij matematičeskij žurnal, Tome 27 (2025) no. 1, pp. 5-20. http://geodesic.mathdoc.fr/item/VMJ_2025_27_1_a0/