On multiple zeros of one entire function which is of interest for the theory of inverse problems
    
    
  
  
  
      
      
      
        
Vladikavkazskij matematičeskij žurnal, Tome 27 (2025) no. 1, pp. 5-20
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider complex zeros of one entire function from the theory of linear inverse problems for second-order differential equations. This function of order $ \rho=1/2 $ is elementary, transcendental, and depends in a simple way on a complex parameter $ p\in\mathbb{C}\setminus\{0\}$. It is required to find out whether there are values of $ p $ for which the function has multiple zeros. The question posed has been fully answered. It is shown that there exists a countable set of values $ p=p_n$, for each of which the entire function has not only an infinite number of simple zeros, but also one zero of multiplicity two. A description is given of both the set of such values $p_n$ and the corresponding multiple zeros. Our main result is expressed in terms of roots of the transcendental equation $\mathrm{sh}\, z=z$, the analysis of which is the subject of the final section of the paper. Here we announce new non-asymptotic estimates, applicable to all roots of the equation in the domain $ z\ne 0 $ and giving very precise localization for them. Numerical calculations confirm our analytical conclusions. There are useful connections with the theory of Mittag-Leffler functions and some spectral problems from mathematical physics.
			
            
            
            
          
        
      @article{VMJ_2025_27_1_a0,
     author = {M. Almohamed and I. V. Tikhonov and V. B. Sherstyukov},
     title = {On multiple zeros of one entire function which is of interest for the theory of inverse problems},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {5--20},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2025},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2025_27_1_a0/}
}
                      
                      
                    TY - JOUR AU - M. Almohamed AU - I. V. Tikhonov AU - V. B. Sherstyukov TI - On multiple zeros of one entire function which is of interest for the theory of inverse problems JO - Vladikavkazskij matematičeskij žurnal PY - 2025 SP - 5 EP - 20 VL - 27 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMJ_2025_27_1_a0/ LA - ru ID - VMJ_2025_27_1_a0 ER -
%0 Journal Article %A M. Almohamed %A I. V. Tikhonov %A V. B. Sherstyukov %T On multiple zeros of one entire function which is of interest for the theory of inverse problems %J Vladikavkazskij matematičeskij žurnal %D 2025 %P 5-20 %V 27 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMJ_2025_27_1_a0/ %G ru %F VMJ_2025_27_1_a0
M. Almohamed; I. V. Tikhonov; V. B. Sherstyukov. On multiple zeros of one entire function which is of interest for the theory of inverse problems. Vladikavkazskij matematičeskij žurnal, Tome 27 (2025) no. 1, pp. 5-20. http://geodesic.mathdoc.fr/item/VMJ_2025_27_1_a0/
