@article{VMJ_2024_26_3_a8,
author = {M. R. Tomaev and Zh. D. Totieva},
title = {An inverse two-dimensional problem for determining two unknowns in equation of memory type for a weakly horizontally inhomogeneous medium},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {112--134},
year = {2024},
volume = {26},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2024_26_3_a8/}
}
TY - JOUR AU - M. R. Tomaev AU - Zh. D. Totieva TI - An inverse two-dimensional problem for determining two unknowns in equation of memory type for a weakly horizontally inhomogeneous medium JO - Vladikavkazskij matematičeskij žurnal PY - 2024 SP - 112 EP - 134 VL - 26 IS - 3 UR - http://geodesic.mathdoc.fr/item/VMJ_2024_26_3_a8/ LA - en ID - VMJ_2024_26_3_a8 ER -
%0 Journal Article %A M. R. Tomaev %A Zh. D. Totieva %T An inverse two-dimensional problem for determining two unknowns in equation of memory type for a weakly horizontally inhomogeneous medium %J Vladikavkazskij matematičeskij žurnal %D 2024 %P 112-134 %V 26 %N 3 %U http://geodesic.mathdoc.fr/item/VMJ_2024_26_3_a8/ %G en %F VMJ_2024_26_3_a8
M. R. Tomaev; Zh. D. Totieva. An inverse two-dimensional problem for determining two unknowns in equation of memory type for a weakly horizontally inhomogeneous medium. Vladikavkazskij matematičeskij žurnal, Tome 26 (2024) no. 3, pp. 112-134. http://geodesic.mathdoc.fr/item/VMJ_2024_26_3_a8/
[1] Lorenzi, A. and Sinestrari, E., “An Inverse Problem in the Theory of Materials with Memory I”, Nonlinear Analysis: Theory, Methods and Applications, 12:12 (1988), 1317–1335 | DOI
[2] Durdiev, D. K., “The Inverse Problem for a Three-Dimensional Wave Equation in a Memory Environmentu”, Matematicheskij analiz i diskretnaya matematika, Izd-vo Novosibirskogo Universiteta, Novosibirsk, 1989, 19–27 (in Russian)
[3] Grasselli, M., Kabanikhin, S. I. and Lorentsi, A., “An Inverse Hyperbolic Integrodifferential Problem Arising in Geophysics. I”, Siberian Mathematical Journal, 33:3 (1992), 415–426 | DOI
[4] Bukhgeym, A. L., “Inverse Problems of Memory Reconstruction”, Journal of Inverse and Ill-posed Problems, 1:3 (1993), 193–206 | DOI
[5] Graselli, M., “Determining the Relaxation Tensor in Linear Viscoelasticity of Integral Type”, Japan Journal of Industrial and Applied Mathematics, 11 (1994), 131–153 | DOI
[6] Cavaterra, C. and Grasselli, M., “Idendifying Memory Kernels in Linear Thermoviscoelasticity of Boltzmann Type”, Mathematical Models and Methods in Applied Sciences, 4:6 (1994), 807–842 | DOI
[7] Durdiev, D. K., “A Multidimensional Inverse Problem for an Equation with Memory”, Siberian Mathematical Journal, 35 (1994), 514–521 | DOI
[8] Bukhgeim, A. L. and Dyatlov, G. V., “Inverse Problems for Equations with Memory”, SIAM J. Math. Fool, 1:2 (1998), 1–17
[9] Durdiev D. K. and Totieva Z. D., Kernel Determination Problems in Hyperbolic Integro-Differential Equations, Infosys Science Foundation Series in Mathematical Sciences, Springer Nature Singapore Pte Ltd, 2023, 368 pp. | DOI
[10] Janno, J. and von Wolfersdorf, L., “Inverse Problems for Identification of Memory Kernels in Viscoelasticity”, Mathematical Methods in the Applied Sciences, 20:4 (1997), 291–314
[11] Janno, J. and Von Wolfersdorf, L., “An Inverse Problem for Identification of a Time- and Space-Dependent Memory Kernel in Viscoelasticity”, Inverse Problems, 17:1 (2001), 13–24 | DOI
[12] Lorenzi, A., Messina, F. and Romanov, V. G., “Recovering a Lame Kernel in a Viscoelastic System”, Applicable Analysis, 86:11 (2007), 1375–1395 | DOI
[13] Romanov, V. G. and Yamamoto, M., “Recovering a Lame Kernel in a Viscoelastic Equation by a Single Boundary Measurement”, Applicable Analysis, 89:3 (2010), 377–390 | DOI
[14] Lorenzi, A. and Romanov, V. G., “Recovering two Lame Kernels in a Viscoelastic System”, Inverse Problems and Imaging, 5:2 (2011), 431–464 | DOI
[15] Romanov, V. G., “A two-dimensional inverse problem for the Viscoelasticity Equation”, Siberian Mathematical Journal, 53:6 (2012), 1128–1138 | DOI
[16] Romanov, V. G., “Inverse Problems for Differential Equations with Memory”, Eurasian Journal of Mathematical and Computer Applications, 2:4 (2014), 51–80
[17] Romanov, V. G., “On the Determination of the Coefficients in the Viscoelasticity Equations”, Siberian Mathematical Journal, 55:3 (2014), 503–510 | DOI
[18] Durdiev, D. K. and Totieva, Zh. D., “The Problem of Determining the One-Dimensional Kernel of the Electroviscoelasticity Equation”, Siberian Mathematical Journal, 58:3 (2017), 427–444 | DOI
[19] Durdiev, D. K. and Rahmonov, A. A., “Inverse Problem for A System of Integro-Differential Equations for SH Waves in A Visco-Elastic Porous Medium: Global Solvability”, Theoretical and Mathematical Physics, 195:3 (2018), 923–937 | DOI
[20] Karchevsky, A. L. and Fatianov, A. G., “Numerical Solution of the Inverse Problem for a System of Elasticity with the Aftereffect for a Vertically Inhomogeneous Medium”, Sibirskii Zhurnal Vychislitel'noi Matematiki, 4:3 (2001), 259–268
[21] Durdiev, U. D., “Numerical Method for Determining the Dependence of the Dielectric Permittivity on the Frequency in the Equation of Electrodynamics with Memory”, Siberian Electronic Mathematical Reports, 17 (2020), 179–189 | DOI
[22] Bozorov, Z. R., “Numerical Determining a Memory Function of a Horizontally-Stratified Elastic Medium with Aftereffect”, Eurasian Journal of Mathematical and Computer Applications, 8:2 (2020), 4–16
[23] Davies, A. R. and Douglas, R. J., “A Kernel Approach to Deconvolution of the Complex Modulus in Linear Viscoelasticity”, Inverse Problems, 36 (2020), 015001 | DOI
[24] Kaltenbacher, B., Khristenko, U., Nikolic, V., Rajendran, L. M. and Wohlmuth, B., “Determining Kernels In Linear Viscoelasticity”, Journal of Computational Physics, 464 (2022), 111331 | DOI
[25] Totieva, Zh. D., “A Global Solvability of a Two-Dimensional Kernel Determination Problem for a Viscoelasticity Equation”, Mathematical Methods in the Applied Sciences, 45:12 (2022), 7555–7575 | DOI
[26] Durdiev, D. K. and Bozorov, Z. R., “A Problem of Determining the Kernel of Integrodifferential Wave Equation with Weak Horizontal Properties”, Dal'nevostochnyi matematicheskii zhurnal, 13:2 (2013), 209–221 (in Russian)
[27] Blagoveshchenskii, D. A. and Fedorenko, A. S., “The Inverse Problem for the Acoustic Equation in a Weakly Horizontally Inhomogeneous Medium”, Journal of Mathematical Sciences, 155:3 (2008), 379–389 | DOI
[28] Durdiev, D. K., “The Inverse Problem of Determining Two Coefficients in One Integro Differential Wave Equation”, Siberian Journal of Industrial Mathematics, 12:3 (2009), 28–40 (in Russian)
[29] Rakhmonov, A. A., Durdiev, U. D. and Bozorov, Z. R., “Problem of Determining the Speed of Sound and the Memory of an Anisotropic Medium”, Theoretical and Mathematical Physics, 207:1 (2021), 494–513 | DOI
[30] Romanov, V. G., Inverse Problems of Mathematical Physics, Nauka, M., 1984 (in Russian)
[31] Totieva, Zh. D., “Determining the Kernel of the Viscoelasticity Equation in a Medium with Slightly Horizontal Homogeneity”, Siberian Mathematical Journal, 61:2 (2020), 359–378 | DOI
[32] Dobrynina, A. A., The Quality Factor of the Lithosphere and Focal Parameters of Earthquakes of the Baikal Rift System, Ph. D. Dissertation, Novosibirsk, 2011, 17 pp.
[33] Voznesensky, E. A., Kushnareva, E. S. and Funikova, V. V., “Nature and Patterns of Absorption of Stress Waves in Soils”, Moscow University Geology Bulletin, 66 (2011), 261–268 | DOI
[34] Alekseev, A. S. and Dobrinsky, V. I., “Some Questions of Practical Use of Inverse Dynamic Problems of Seismics”, Mathematical Problems of Geophysics, 6, no. 2, Novosibirsk, 1975, 7–53 (in Russian)
[35] Yakhno, V. G., Inverse Problems for Differential Equations of Elasticity, Nauka, Novosibirsk, 1988, 304 pp. (in Russian)