On extreme extension of positive operators
Vladikavkazskij matematičeskij žurnal, Tome 26 (2024) no. 2, pp. 47-53 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Given vector lattices $E$, $F$ and a positive operator $S$ from a majorzing subspace $D$ of $E$ to $F$, denote by $\mathcal{E}(S)$ the collection of all positive extensions of $S$ to all of $E$. This note aims to describe the collection of extreme points of the convex set $\mathcal{E}(T\circ S)$. It is proved, in particular, that $\mathcal{E}(T\circ S)$ and $T\circ\mathcal{E}(S)$ coincide and every extreme point of $\mathcal{E}(T\circ S)$ is an extreme point of $T\circ\mathcal{E}(S)$, whenever $T:F\to G$ is a Maharam operator between Dedekind complete vector lattices. The proofs of the main results are based on the three ingredients: a characterization of extreme points of subdifferentials, abstract disintegration in Kantorovich spaces, and an intrinsic characterization of subdifferentials.
@article{VMJ_2024_26_2_a3,
     author = {A. G. Kusraev},
     title = {On extreme extension of positive operators},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {47--53},
     year = {2024},
     volume = {26},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2024_26_2_a3/}
}
TY  - JOUR
AU  - A. G. Kusraev
TI  - On extreme extension of positive operators
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2024
SP  - 47
EP  - 53
VL  - 26
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMJ_2024_26_2_a3/
LA  - en
ID  - VMJ_2024_26_2_a3
ER  - 
%0 Journal Article
%A A. G. Kusraev
%T On extreme extension of positive operators
%J Vladikavkazskij matematičeskij žurnal
%D 2024
%P 47-53
%V 26
%N 2
%U http://geodesic.mathdoc.fr/item/VMJ_2024_26_2_a3/
%G en
%F VMJ_2024_26_2_a3
A. G. Kusraev. On extreme extension of positive operators. Vladikavkazskij matematičeskij žurnal, Tome 26 (2024) no. 2, pp. 47-53. http://geodesic.mathdoc.fr/item/VMJ_2024_26_2_a3/

[1] Aliprantis, C. D. and Burkinshaw, O., Positive Operators, Springer, Dordrecht, 2006 | MR | Zbl

[2] Lipecki, Z., Plachky, D. and Thomsen, W., “Extension of Positive Operators and Extreme Points. I”, Colloquium Mathematicum, 42 (1979), 279–284 | DOI | MR | Zbl

[3] Kutateladze, S. S., “Extreme Points of Subdifferentials”, Doklady Akademii Nauk SSSR, 242:5 (1978), 1001–1003 (in Russian) | MR | Zbl

[4] Kutateladze, S. S., “The Krein–Mil'man Theorem and its Inverse”, Siberian Mathematical Journal, 21:1 (1980), 97–103 | DOI | MR | Zbl

[5] Kusraev, A. G. and Kutateladze, S. S., “Analysis of Subdifferentials via Boolean-Valued Models”, Doklady Akademii Nauk SSSR, 265:5 (1982), 1061–1064 (in Russian) | MR | Zbl

[6] Kusraev, A. G., “General Desintegration Formulas”, Doklady Akademii Nauk SSSR, 265:6 (1982), 1312–1316 | MR | Zbl

[7] Lipecki, Z., “Compactness and Extreme Points of the Set of Quasi-Measure Extensions of a Quasi-Measure”, Dissertationes Mathematicae, 493 (2013), 1–59 | DOI | MR

[8] Holmes, R. B., Geometric Functional Analysis and Its Applications, Springer-Verlag, Berlin etc, 1975 | MR | Zbl

[9] Kusraev, A. G. and Kutateladze, S. S., Subdifferentials: Theory and Applications, Kluwer Academic Publishers, Dordrecht, 1995 | MR | Zbl

[10] Lipecki, Z., “Extensions of Positive Operators and Extreme Points. III”, Colloquium Mathematicum, 46 (1982), 263–268 | DOI | MR | Zbl