Quadrature formula of the highest algebraic degree of accuracy containing predefined nods
Vladikavkazskij matematičeskij žurnal, Tome 25 (2023) no. 1, pp. 131-140 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Approximate methods for calculating definite integrals are relevant to this day. Among them, the quadrature methods are the most popular as they enables one to calculate approximately the integral using a finite number of values of the integrable function. In addition, in many cases, less computational labor is required compared to other methods. Using Chebyshev polynomials of the first, second, third, and fourth kind corresponding to the weight functions $p(x)=\frac{1}{\sqrt{1-x^2}}$, $p(x)=\sqrt{1- x^2}$, $p(x)=\sqrt{\frac{1+x}{1-x}}$, $p(x)=\sqrt{\frac{1-x}{1+x }}$, on the segment $[-1,1]$, quadrature formulas are constructed with predefined nodes $a_1=-1$, $a_2=1$, and estimates of the remainder terms with degrees of accuracy $2n+1$. In this case, a special place is occupied by the construction of orthogonal polynomials with respect to the weight $p(x)(x^2-1)$ and finding their roots. This problem turned out to be laborious and was solved by methods of computational mathematics.
@article{VMJ_2023_25_1_a9,
     author = {Sh. S. Khubezhty},
     title = {Quadrature formula of the highest algebraic degree of accuracy containing predefined nods},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {131--140},
     year = {2023},
     volume = {25},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2023_25_1_a9/}
}
TY  - JOUR
AU  - Sh. S. Khubezhty
TI  - Quadrature formula of the highest algebraic degree of accuracy containing predefined nods
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2023
SP  - 131
EP  - 140
VL  - 25
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMJ_2023_25_1_a9/
LA  - ru
ID  - VMJ_2023_25_1_a9
ER  - 
%0 Journal Article
%A Sh. S. Khubezhty
%T Quadrature formula of the highest algebraic degree of accuracy containing predefined nods
%J Vladikavkazskij matematičeskij žurnal
%D 2023
%P 131-140
%V 25
%N 1
%U http://geodesic.mathdoc.fr/item/VMJ_2023_25_1_a9/
%G ru
%F VMJ_2023_25_1_a9
Sh. S. Khubezhty. Quadrature formula of the highest algebraic degree of accuracy containing predefined nods. Vladikavkazskij matematičeskij žurnal, Tome 25 (2023) no. 1, pp. 131-140. http://geodesic.mathdoc.fr/item/VMJ_2023_25_1_a9/

[1] Krylov V. I., Approximate Calculation of Integrals, Macmillan Co, New York, 1962 | MR | Zbl

[2] Bakhvalov, N. S., Zhidkov, N. P. and Kobelkov, G. M., Numerical Methods, 2nd ed., Fizmatlit, M., 2002, 598 pp. (in Russian) | MR

[3] Il'in V. P., Numerical Analysis, v. 1, Novosibirsk, 2004, 334 pp. (in Russian)

[4] Khubezhty Sh. S., Quadrature Formulas for Singular Integrals and Some of their Applications, SMI VSC RAS, Vladikavkaz, 2011 (in Russian)

[5] Mardanov A. A., Calculation of Integrals with Singularities and Solution of Singular Integral Equations, Publ. House, St. Petersburg, 2017 (in Russian)

[6] Pashkovsky, S., Computational Applications of Polynomials and Chebyshev Series, Nauka, M., 1983, 382 pp. (in Russian) | MR

[7] Khubezhty, Sh. S. and Nartikoev, N. B., “Quadrature Formulas with Predetermined Nodes with the Weight Function $p(x)=\frac{1}{\sqrt{1-x^2}}$”, Proceedings of the XIV Intern. Sci.-Tech. Conf. (Penza, December 1–4, 2020), 2020, 22–25 (in Russian)

[8] Khubezhty, Sh. S. and Nartikoev, N. B., “Quadrature Formulas Containing Predetermined Nodes with the Weight Function $p(x)=\sqrt{1-x^2}$”, Proceedings of the XIV Intern. Sci.-Tech. Conf. (Penza, December 1–4, 2020), 2020, 98–102 (in Russian)