@article{VMJ_2023_25_1_a7,
author = {A. Yu. Trynin},
title = {On the best polynomials approximation of segment functions},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {105--111},
year = {2023},
volume = {25},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2023_25_1_a7/}
}
A. Yu. Trynin. On the best polynomials approximation of segment functions. Vladikavkazskij matematičeskij žurnal, Tome 25 (2023) no. 1, pp. 105-111. http://geodesic.mathdoc.fr/item/VMJ_2023_25_1_a7/
[1] Polovinkin E. S., Mnogoznachnyi analiz i differentsialnye vklyucheniya, Fizmatlit, M., 2014, 524 pp.
[2] Vygodchikova I. Yu., Dudov S. I., Sorina E. V., “Vneshnyaya otsenka segmentnoi funktsii polinomialnoi polosoi”, Zhurn. vychisl. matem. i mat. fiz., 49:7 (2009), 1175–1183 | MR | Zbl
[3] Vygodchikova I. Yu., “O edinstvennosti resheniya zadachi nailuchshego priblizheniya mnogoznachnogo otobrazheniya algebraicheskim polinomom”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 6:1–2 (2006), 11–19 | DOI
[4] Vygodchikova I. Yu., “Ob approksimatsii mnogoznachnogo otobrazheniya algebraicheskim polinomom s ogranicheniyami”, Izv. vuzov. Mat., 2015, no. 2, 30–34 | MR | Zbl
[5] Vygodchikova I. Yu., “O priblizhenii dvuznachnoi funktsii algebraicheskim polinomom”, Izv. vuzov. Mat., 2016, no. 4, 8–13 | MR | Zbl
[6] Stafney J. D., “A permissible restriction on the coefficients in uniform polynomial approximation to $C[0, 1]$”, Duke Math. J., 34:3 (1967), 393–396 | DOI | MR | Zbl
[7] Khavinson S. Ya., “Dopustimye velichiny koeffitsientov mnogochlenov pri ravnomernoi approksimatsii nepreryvnykh funktsii”, Mat. zametki, 6:5 (1969), 619–625 | Zbl
[8] Lyusternik L. A., Sobolev V. I., Elementy funktsionalnogo analiza, Nauka, gl. red. fiz.-mat. lit-ry, M., 1965, 520 pp. | MR
[9] Natanson I. P., Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974, 480 pp. | MR