Large time decay estimates of the solution to the Cauchy problem of doubly degenerate parabolic equations with damping
Vladikavkazskij matematičeskij žurnal, Tome 25 (2023) no. 1, pp. 93-104 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we study the large time behaviour of the solution and compactification of support to the Cauchy problem for doubly degenerate parabolic equations with strong gradient damping. Under the suitable assumptions on the structure of the equation and data of the problem we establish new sharp bound of solutions for a large time. Moreover, when the support of initial datum is compact we prove that the support of the solution contains in the ball with radius which is independent in time variable. In the critical case of the behaviour of the damping term the support of the solution depends on time variable logarithmically for a sufficiently large time. The main tool of the proof is based on nontrivial use of cylindrical Gagliardo–Nirenberg type embeddings and recursive inequalities. The sup-norm estimates of the solution is carried out by modified version of the classical method of De-Giorgi–Ladyzhenskaya–Uraltseva–DiBenedetto. The approach of the paper is flexible enough and can be used when studying the Cauchy–Dirichlet or Cauchy–Neumann problems in domains with non compact boundaries.
@article{VMJ_2023_25_1_a6,
     author = {Al. F. Tedeev and An. F. Tedeev},
     title = {Large time decay estimates of the solution to the {Cauchy} problem of doubly degenerate parabolic equations with damping},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {93--104},
     year = {2023},
     volume = {25},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2023_25_1_a6/}
}
TY  - JOUR
AU  - Al. F. Tedeev
AU  - An. F. Tedeev
TI  - Large time decay estimates of the solution to the Cauchy problem of doubly degenerate parabolic equations with damping
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2023
SP  - 93
EP  - 104
VL  - 25
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMJ_2023_25_1_a6/
LA  - en
ID  - VMJ_2023_25_1_a6
ER  - 
%0 Journal Article
%A Al. F. Tedeev
%A An. F. Tedeev
%T Large time decay estimates of the solution to the Cauchy problem of doubly degenerate parabolic equations with damping
%J Vladikavkazskij matematičeskij žurnal
%D 2023
%P 93-104
%V 25
%N 1
%U http://geodesic.mathdoc.fr/item/VMJ_2023_25_1_a6/
%G en
%F VMJ_2023_25_1_a6
Al. F. Tedeev; An. F. Tedeev. Large time decay estimates of the solution to the Cauchy problem of doubly degenerate parabolic equations with damping. Vladikavkazskij matematičeskij žurnal, Tome 25 (2023) no. 1, pp. 93-104. http://geodesic.mathdoc.fr/item/VMJ_2023_25_1_a6/

[1] Antontsev, S. N., Díaz, J. I. and Shmarev, S. I., Energy Methods for Free Boundary Problems: Applications to Non-Linear PDEs and Fluid Mechanics, Progress in Nonlinear Differential Equations and Their Applications, 48, Bikhäuser, Boston, 2002 | MR

[2] Laurencot, Ph. and Vazquez, J. L., “Localized non-Diffusive Asymptotic Patterns for Nonlinear Parabolic Equations with Gradient Absorptionm”, Journal of Dynamics and Differential Equations, 19:4 (2007), 985–1005 | DOI | MR | Zbl

[3] Andreucci, D., “Degenerate Parabolic Equations with Initial Data Measure”, Transactions of the American Mathematical Society, 349:10 (1997), 3911–3923 | DOI | MR | Zbl

[4] Deng, L. and Shang, X., “Doubly Degenerate Parabolic Equation with Time Gradient Source and Initial Data Measure”, Hindawi Journal of Function Spaces, 2020, 1–11 | DOI | MR

[5] Benachour, S., Roynette, B. and Vallois, P., “Asymptotic Estimates of Solutions of $u_{t}+\Delta u=-\vert \nabla u\vert $”, Journal of Functional Analysis, 144:2 (1997), 301–324 | DOI | MR | Zbl

[6] Benachour, S. and Laurencot, Ph., “Global Solutions to Viscous Hamilton–Jacobi Equations with Irregular Initial Data”, Communications in Partial Differential Equations, 24:11–12 (1999), 1999–2021 | DOI | MR | Zbl

[7] Benachour, S., Laurencot, Ph. and Schmitt, D., “Extinction and Decay Estimates for Viscous Hamilton–Jacobi Equations in $\mathbb{R}^N$”, Proceedings of the American Mathematical Society, 130:4 (2001), 1103–1111 | DOI | MR

[8] Ben-Artzi, M., Souplet, Ph. and Weissler, F. B., “The Local Theory for Viscous Hamilton–Jacobi Equations in Lebesgue Spaces”, Journal de Mathématiques Pures et Appliqués, 81:4 (2002), 343–378 | DOI | MR | Zbl

[9] Benachour, S., Laurencot, Ph., Schmitt, D. and Souplet, Ph., “Extinction and Nonextinction for Viscous Hamilton–Jacobi Equations in $\mathbb{R}^N$”, Asymptotic Analysis, 31:3–4 (2002), 229–246 | MR | Zbl

[10] Gilding, B. H., Guedda, M. and Kersner, R., “The Cauchy Problem for $u_{t}$ $=\Delta u+\vert \nabla u\vert ^{q}$”, Journal of Mathematical Analysis and Applications, 284:2 (2003), 733–755 | DOI | MR | Zbl

[11] Andreucci, D., Tedeev, A. F. and Ughi, M., “The Cauchy Problem for Degenerate Parabolic Equations with Source and Damping”, Ukrainian Mathematical Bulletin, 2004, no. 1, 1–23 | MR

[12] Benachour, S., Karch, G. and Laurencot, Ph., “Asymptotic Profiles of Solutions to Viscous Hamilton–Jacobi Equations”, Journal de Mathématiques Pures et Appliqués, 83:10 (2004), 1275–1308 | DOI | MR | Zbl

[13] Biler, P., Guedda, M. and Karch, G., “Asymptotic Properties of Solutions of the Viscous Hamilton–Jacobi Equation”, Journal of Evolution Equations, 4 (2004), 75–97 | DOI | MR | Zbl

[14] Gilding, B. H., “The Cauchy Problem for $u_{t}$ $=\Delta u+\left\vert \nabla u\right\vert ^{q}$, Large-Time Behaviour”, Journal de Mathématiques Pures et Appliqués, 84:6 (2005), 753–785 | DOI | MR | Zbl

[15] Gallay, Th. and Laurencot, Ph., “Asymptotic Behavior for a Viscous Hamilton–Jacobi Equation with Critical Exponent”, Indiana University Mathematics Journal, 56 (2007), 459–479 | DOI | MR | Zbl

[16] Iagar, R. and Laurencot, Ph., “Positivity, Decay and Extinction for a Singular Diffusion Equation with Gradient Absorption”, Journal of Functional Analysis, 262:7 (2012), 3186–3239 | DOI | MR | Zbl

[17] Bidaut-Veron, M.-F. and Dao, N. A., “$L_{\infty}$ Estimates and Uniqueness Results for Nonlinear Parabolic Equations with Gradient Absorption Terms”, Nonlinear Analysis, 91 (2013), 121–152 | DOI | MR | Zbl

[18] Attouchi, A., “Gradient Estimate and a Liouville Theorem for a $P$-Laplacian Evolution Equation with a Gradient Nonlinearity”, Differential and Integral Equations, 29:1–2 (2016), 137–150 | DOI | MR | Zbl

[19] Iagar, R. G., Laurencot, Ph. and Stinner, Ch., “Instantaneous Shrinking and Single Point Extinction for Viscous Hamilton–Jacobi Equations with Fast Diffusion”, Mathematische Annalen, 368, Springer-Verlag, 2017, 65–109 | DOI | MR

[20] Andreucci, D. and Tedeev, A. F., “A Fujita Type Result for a Degenerate Neumann Problem in Domains with Noncompact Boundary”, Journal of Mathematical Analysis and Applications, 231:2 (1999), 543–567 | DOI | MR | Zbl

[21] Andreucci, D. and Tedeev, A. F., “Finite Speed of Propagation for the Thin-Film Equation and other Higher-Order Parabolic Equations with General Nonlinearity”, Interfaces Free Bound, 3:3 (2001), 233–264 | DOI | MR | Zbl

[22] Andreucci, D. and Tedeev, A. F., “Universal Bounds at the Blow-up Time for Nonlinear Parabolic Equations”, Advances in Difference Equations, 10:1 (2005), 89–120 | DOI | MR | Zbl

[23] Ladyzhenskaja, O., Solonnikov, V. A. and Uralceva, N. V., Linear and Quasi-Linear Equations of Parabolic Type, American Mathematical Society, Providence, RI, 1968 | MR