@article{VMJ_2023_25_1_a6,
author = {Al. F. Tedeev and An. F. Tedeev},
title = {Large time decay estimates of the solution to the {Cauchy} problem of doubly degenerate parabolic equations with damping},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {93--104},
year = {2023},
volume = {25},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2023_25_1_a6/}
}
TY - JOUR AU - Al. F. Tedeev AU - An. F. Tedeev TI - Large time decay estimates of the solution to the Cauchy problem of doubly degenerate parabolic equations with damping JO - Vladikavkazskij matematičeskij žurnal PY - 2023 SP - 93 EP - 104 VL - 25 IS - 1 UR - http://geodesic.mathdoc.fr/item/VMJ_2023_25_1_a6/ LA - en ID - VMJ_2023_25_1_a6 ER -
%0 Journal Article %A Al. F. Tedeev %A An. F. Tedeev %T Large time decay estimates of the solution to the Cauchy problem of doubly degenerate parabolic equations with damping %J Vladikavkazskij matematičeskij žurnal %D 2023 %P 93-104 %V 25 %N 1 %U http://geodesic.mathdoc.fr/item/VMJ_2023_25_1_a6/ %G en %F VMJ_2023_25_1_a6
Al. F. Tedeev; An. F. Tedeev. Large time decay estimates of the solution to the Cauchy problem of doubly degenerate parabolic equations with damping. Vladikavkazskij matematičeskij žurnal, Tome 25 (2023) no. 1, pp. 93-104. http://geodesic.mathdoc.fr/item/VMJ_2023_25_1_a6/
[1] Antontsev, S. N., Díaz, J. I. and Shmarev, S. I., Energy Methods for Free Boundary Problems: Applications to Non-Linear PDEs and Fluid Mechanics, Progress in Nonlinear Differential Equations and Their Applications, 48, Bikhäuser, Boston, 2002 | MR
[2] Laurencot, Ph. and Vazquez, J. L., “Localized non-Diffusive Asymptotic Patterns for Nonlinear Parabolic Equations with Gradient Absorptionm”, Journal of Dynamics and Differential Equations, 19:4 (2007), 985–1005 | DOI | MR | Zbl
[3] Andreucci, D., “Degenerate Parabolic Equations with Initial Data Measure”, Transactions of the American Mathematical Society, 349:10 (1997), 3911–3923 | DOI | MR | Zbl
[4] Deng, L. and Shang, X., “Doubly Degenerate Parabolic Equation with Time Gradient Source and Initial Data Measure”, Hindawi Journal of Function Spaces, 2020, 1–11 | DOI | MR
[5] Benachour, S., Roynette, B. and Vallois, P., “Asymptotic Estimates of Solutions of $u_{t}+\Delta u=-\vert \nabla u\vert $”, Journal of Functional Analysis, 144:2 (1997), 301–324 | DOI | MR | Zbl
[6] Benachour, S. and Laurencot, Ph., “Global Solutions to Viscous Hamilton–Jacobi Equations with Irregular Initial Data”, Communications in Partial Differential Equations, 24:11–12 (1999), 1999–2021 | DOI | MR | Zbl
[7] Benachour, S., Laurencot, Ph. and Schmitt, D., “Extinction and Decay Estimates for Viscous Hamilton–Jacobi Equations in $\mathbb{R}^N$”, Proceedings of the American Mathematical Society, 130:4 (2001), 1103–1111 | DOI | MR
[8] Ben-Artzi, M., Souplet, Ph. and Weissler, F. B., “The Local Theory for Viscous Hamilton–Jacobi Equations in Lebesgue Spaces”, Journal de Mathématiques Pures et Appliqués, 81:4 (2002), 343–378 | DOI | MR | Zbl
[9] Benachour, S., Laurencot, Ph., Schmitt, D. and Souplet, Ph., “Extinction and Nonextinction for Viscous Hamilton–Jacobi Equations in $\mathbb{R}^N$”, Asymptotic Analysis, 31:3–4 (2002), 229–246 | MR | Zbl
[10] Gilding, B. H., Guedda, M. and Kersner, R., “The Cauchy Problem for $u_{t}$ $=\Delta u+\vert \nabla u\vert ^{q}$”, Journal of Mathematical Analysis and Applications, 284:2 (2003), 733–755 | DOI | MR | Zbl
[11] Andreucci, D., Tedeev, A. F. and Ughi, M., “The Cauchy Problem for Degenerate Parabolic Equations with Source and Damping”, Ukrainian Mathematical Bulletin, 2004, no. 1, 1–23 | MR
[12] Benachour, S., Karch, G. and Laurencot, Ph., “Asymptotic Profiles of Solutions to Viscous Hamilton–Jacobi Equations”, Journal de Mathématiques Pures et Appliqués, 83:10 (2004), 1275–1308 | DOI | MR | Zbl
[13] Biler, P., Guedda, M. and Karch, G., “Asymptotic Properties of Solutions of the Viscous Hamilton–Jacobi Equation”, Journal of Evolution Equations, 4 (2004), 75–97 | DOI | MR | Zbl
[14] Gilding, B. H., “The Cauchy Problem for $u_{t}$ $=\Delta u+\left\vert \nabla u\right\vert ^{q}$, Large-Time Behaviour”, Journal de Mathématiques Pures et Appliqués, 84:6 (2005), 753–785 | DOI | MR | Zbl
[15] Gallay, Th. and Laurencot, Ph., “Asymptotic Behavior for a Viscous Hamilton–Jacobi Equation with Critical Exponent”, Indiana University Mathematics Journal, 56 (2007), 459–479 | DOI | MR | Zbl
[16] Iagar, R. and Laurencot, Ph., “Positivity, Decay and Extinction for a Singular Diffusion Equation with Gradient Absorption”, Journal of Functional Analysis, 262:7 (2012), 3186–3239 | DOI | MR | Zbl
[17] Bidaut-Veron, M.-F. and Dao, N. A., “$L_{\infty}$ Estimates and Uniqueness Results for Nonlinear Parabolic Equations with Gradient Absorption Terms”, Nonlinear Analysis, 91 (2013), 121–152 | DOI | MR | Zbl
[18] Attouchi, A., “Gradient Estimate and a Liouville Theorem for a $P$-Laplacian Evolution Equation with a Gradient Nonlinearity”, Differential and Integral Equations, 29:1–2 (2016), 137–150 | DOI | MR | Zbl
[19] Iagar, R. G., Laurencot, Ph. and Stinner, Ch., “Instantaneous Shrinking and Single Point Extinction for Viscous Hamilton–Jacobi Equations with Fast Diffusion”, Mathematische Annalen, 368, Springer-Verlag, 2017, 65–109 | DOI | MR
[20] Andreucci, D. and Tedeev, A. F., “A Fujita Type Result for a Degenerate Neumann Problem in Domains with Noncompact Boundary”, Journal of Mathematical Analysis and Applications, 231:2 (1999), 543–567 | DOI | MR | Zbl
[21] Andreucci, D. and Tedeev, A. F., “Finite Speed of Propagation for the Thin-Film Equation and other Higher-Order Parabolic Equations with General Nonlinearity”, Interfaces Free Bound, 3:3 (2001), 233–264 | DOI | MR | Zbl
[22] Andreucci, D. and Tedeev, A. F., “Universal Bounds at the Blow-up Time for Nonlinear Parabolic Equations”, Advances in Difference Equations, 10:1 (2005), 89–120 | DOI | MR | Zbl
[23] Ladyzhenskaja, O., Solonnikov, V. A. and Uralceva, N. V., Linear and Quasi-Linear Equations of Parabolic Type, American Mathematical Society, Providence, RI, 1968 | MR