Unicity on entire functions concerning their difference operators and derivatives
Vladikavkazskij matematičeskij žurnal, Tome 25 (2023) no. 1, pp. 81-92
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we study the uniqueness of entire functions concerning their difference operator and derivatives. The idea of entire and meromorphic functions relies heavily on this direction. Rubel and Yang considered the uniqueness of entire function and its derivative and proved that if $f(z)$ and $f'(z)$ share two values $a,b$ counting multilicities then $f(z)\equiv f'(z)$. Later, Li Ping and Yang improved the result given by Rubel and Yang and proved that if $f(z)$ is a non-constant entire function and $a,b$ are two finite distinct complex values and if $f(z)$ and $f^{(k)}(z)$ share $a$ counting multiplicities and $b$ ignoring multiplicities then $f(z)\equiv f^{(k)}(z)$. In recent years, the value distribution of meromorphic functions of finite order with respect to difference analogue has become a subject of interest. By replacing finite distinct complex values by polynomials, we prove the following result: Let $\Delta f(z)$ be trancendental entire functions of finite order, $ k \geq 0$ be integer and $P_{1}$ and $P_{2}$ be two polynomials. If $\Delta f(z)$ and $f^{(k)}$ share $P_{1}$ CM and share $P_{2}$ IM, then $\Delta f \equiv f^{(k)}$. A non-trivial proof of this result uses Nevanlinna's value distribution theory.
@article{VMJ_2023_25_1_a5,
author = {S. Rajeshwari and B. Sheebakousar},
title = {Unicity on entire functions concerning their difference operators and derivatives},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {81--92},
publisher = {mathdoc},
volume = {25},
number = {1},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2023_25_1_a5/}
}
TY - JOUR AU - S. Rajeshwari AU - B. Sheebakousar TI - Unicity on entire functions concerning their difference operators and derivatives JO - Vladikavkazskij matematičeskij žurnal PY - 2023 SP - 81 EP - 92 VL - 25 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMJ_2023_25_1_a5/ LA - en ID - VMJ_2023_25_1_a5 ER -
S. Rajeshwari; B. Sheebakousar. Unicity on entire functions concerning their difference operators and derivatives. Vladikavkazskij matematičeskij žurnal, Tome 25 (2023) no. 1, pp. 81-92. http://geodesic.mathdoc.fr/item/VMJ_2023_25_1_a5/