@article{VMJ_2023_25_1_a3,
author = {P. Ghosh and T. K. Samanta},
title = {On stability of retro {Banach} frame with respect to $b$-linear functional in $n${-Banach} space},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {48--63},
year = {2023},
volume = {25},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2023_25_1_a3/}
}
TY - JOUR AU - P. Ghosh AU - T. K. Samanta TI - On stability of retro Banach frame with respect to $b$-linear functional in $n$-Banach space JO - Vladikavkazskij matematičeskij žurnal PY - 2023 SP - 48 EP - 63 VL - 25 IS - 1 UR - http://geodesic.mathdoc.fr/item/VMJ_2023_25_1_a3/ LA - en ID - VMJ_2023_25_1_a3 ER -
P. Ghosh; T. K. Samanta. On stability of retro Banach frame with respect to $b$-linear functional in $n$-Banach space. Vladikavkazskij matematičeskij žurnal, Tome 25 (2023) no. 1, pp. 48-63. http://geodesic.mathdoc.fr/item/VMJ_2023_25_1_a3/
[1] Gabor, D., “Theory of Communications”, Journal of Institution of Electrical Engineers, 93 (1946), 429–457
[2] Duffin, R. J. and Schaeffer, A. C., “A Class of Nonharmonic Fourier Series”, Transactions of the American Mathematical Society, 72:2 (1952), 341–366 | DOI | MR | Zbl
[3] Daubechies, I., Grossmann, A. and Mayer, Y., “Painless Nonorthogonal Expansions”, Journal of Mathematical Physics, 27:5 (1986), 1271–1283 | DOI | MR | Zbl
[4] Feichtinger, H. G. and Grochenig, K., “Banach Spaces Related to Integrable Group Representation and their Atomic Decompositions,I”, Journal of Functional Analysis, 86:2 (1989), 307–340 | DOI | MR | Zbl
[5] Feichtinger, H. G. and Grochenig, K., “Banach Spaces Related to Integrable Group Representation and their Atomic Decompositions, II”, Monatshefte fur Mathematik, 108 (1989), 129–148 | DOI | MR | Zbl
[6] Grochenig, K., “Describing Functions: Atomic Decomposition Versus Frames”, Monatshefte fur Mathematik, 112:1 (1991), 1–42 | DOI | MR | Zbl
[7] Cazassa, P. G., Han, D. and Larson, D. R., “Frames for Banach Spaces”, The Functional and Harmonic Analysis of Wavelets and Frames, Contemporary Mathematics, 247, American Mathematical Society, Providence, R. I., 1999, 149–182 | DOI | MR
[8] Jain, P. K., Kaushik, S. K. and Vashisht, L. K., “Banach Frames for Conjugate Banach Spaces”, Journal for Analysis and its Applications, 23:4 (2004), 713–720 | DOI | MR | Zbl
[9] Vashisht, L. K., “On Retro Banach Frames of Type P”, Azerbaijan Journal of Mathematics, 2 (2012), 82–89 | MR
[10] Christensen, O. and Heil, C., “Perturbation of Banach Frames and Atomic Decompositions”, Mathematische Nachrichten, 185:1 (1997), 33–47 | DOI | MR | Zbl
[11] Jain, P. K., Kaushik, S. K. and Vashisht, L. K., “On Stability of Banach Frames”, Bulletin of the Korean Mathematical Society, 44:1 (2007), 73–81 | DOI | MR | Zbl
[12] Gahler, S., “Lineare 2-Normierte Raume”, Mathematische Nachrichten, 28:1–2 (1964), 1–43 | DOI | MR | Zbl
[13] Gunawan, H. and Mashadi, M., “On $n$-Normed Spaces”, International Journal of Mathematics and Mathematical Sciences, 27:10 (2001), 631–639 | DOI | MR | Zbl
[14] Ghosh, P. and Samanta, T. K., “Construction of Frame Relative to $n$-Hilbert Space”, Journal of Linear and Topological Algebra, 10:02 (2021), 117–130 | Zbl
[15] Ghosh, P. and Samanta, T. K., “Introduction of Frame in Tensor Product of $n$-Hilbert Spaces”, Sahand Communication in Mathematical Analysis, 18:4 (2021), 1–18 | DOI | MR
[16] Ghosh, P. and Samanta, T. K., “Atomic Systems in $n$-Hilbert Spaces and their Tensor Products”, Journal Linear Topological Algebra, 10:04 (2021), 241–256 | Zbl
[17] Ghosh, P. and Samanta, T. K., “Representation of Uniform Boundedness Principle and Hahn-Banach Theorem in Linear $n$-Normed Space”, The Journal of Analysis, 30:2 (2022), 597–619 | DOI | MR | Zbl
[18] Singer, I., Bases in Banach Spaces, v. II, Springer-Verlag, New York–Heidelberg, 1981 | Zbl