On stability of retro Banach frame with respect to $b$-linear functional in $n$-Banach space
Vladikavkazskij matematičeskij žurnal, Tome 25 (2023) no. 1, pp. 48-63 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We introduce the notion of a retro Banach frame relative to a bounded $b$-linear functional in $n$-Banach space and see that the sum of two retro Banach frames in $n$-Banach space with different reconstructions operators is also a retro Banach frame in $n$-Banach space. Also, we define retro Banach Bessel sequence with respect to a bounded $b$-linear functional in $n$-Banach space. A necessary and sufficient condition for the stability of retro Banach frame with respect to bounded $b$-linear functional in $n$-Banach space is being obtained. Further, we prove that retro Banach frame with respect to bounded $b$-linear functional in $n$-Banach space is stable under perturbation of frame elements by positively confined sequence of scalars. In $n$-Banach space, some perturbation results of retro Banach frame with the help of bounded $b$-linear functional in $n$-Banach space have been studied. Finally, we give a sufficient condition for finite sum of retro Banach frames to be a retro Banach frame in $n$-Banach space. At the end, we discuss retro Banach frame with respect to a bounded $b$-linear functional in Cartesian product of two $n$-Banach spaces.
@article{VMJ_2023_25_1_a3,
     author = {P. Ghosh and T. K. Samanta},
     title = {On stability of retro {Banach} frame with respect to $b$-linear functional in $n${-Banach} space},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {48--63},
     year = {2023},
     volume = {25},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2023_25_1_a3/}
}
TY  - JOUR
AU  - P. Ghosh
AU  - T. K. Samanta
TI  - On stability of retro Banach frame with respect to $b$-linear functional in $n$-Banach space
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2023
SP  - 48
EP  - 63
VL  - 25
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMJ_2023_25_1_a3/
LA  - en
ID  - VMJ_2023_25_1_a3
ER  - 
%0 Journal Article
%A P. Ghosh
%A T. K. Samanta
%T On stability of retro Banach frame with respect to $b$-linear functional in $n$-Banach space
%J Vladikavkazskij matematičeskij žurnal
%D 2023
%P 48-63
%V 25
%N 1
%U http://geodesic.mathdoc.fr/item/VMJ_2023_25_1_a3/
%G en
%F VMJ_2023_25_1_a3
P. Ghosh; T. K. Samanta. On stability of retro Banach frame with respect to $b$-linear functional in $n$-Banach space. Vladikavkazskij matematičeskij žurnal, Tome 25 (2023) no. 1, pp. 48-63. http://geodesic.mathdoc.fr/item/VMJ_2023_25_1_a3/

[1] Gabor, D., “Theory of Communications”, Journal of Institution of Electrical Engineers, 93 (1946), 429–457

[2] Duffin, R. J. and Schaeffer, A. C., “A Class of Nonharmonic Fourier Series”, Transactions of the American Mathematical Society, 72:2 (1952), 341–366 | DOI | MR | Zbl

[3] Daubechies, I., Grossmann, A. and Mayer, Y., “Painless Nonorthogonal Expansions”, Journal of Mathematical Physics, 27:5 (1986), 1271–1283 | DOI | MR | Zbl

[4] Feichtinger, H. G. and Grochenig, K., “Banach Spaces Related to Integrable Group Representation and their Atomic Decompositions,I”, Journal of Functional Analysis, 86:2 (1989), 307–340 | DOI | MR | Zbl

[5] Feichtinger, H. G. and Grochenig, K., “Banach Spaces Related to Integrable Group Representation and their Atomic Decompositions, II”, Monatshefte fur Mathematik, 108 (1989), 129–148 | DOI | MR | Zbl

[6] Grochenig, K., “Describing Functions: Atomic Decomposition Versus Frames”, Monatshefte fur Mathematik, 112:1 (1991), 1–42 | DOI | MR | Zbl

[7] Cazassa, P. G., Han, D. and Larson, D. R., “Frames for Banach Spaces”, The Functional and Harmonic Analysis of Wavelets and Frames, Contemporary Mathematics, 247, American Mathematical Society, Providence, R. I., 1999, 149–182 | DOI | MR

[8] Jain, P. K., Kaushik, S. K. and Vashisht, L. K., “Banach Frames for Conjugate Banach Spaces”, Journal for Analysis and its Applications, 23:4 (2004), 713–720 | DOI | MR | Zbl

[9] Vashisht, L. K., “On Retro Banach Frames of Type P”, Azerbaijan Journal of Mathematics, 2 (2012), 82–89 | MR

[10] Christensen, O. and Heil, C., “Perturbation of Banach Frames and Atomic Decompositions”, Mathematische Nachrichten, 185:1 (1997), 33–47 | DOI | MR | Zbl

[11] Jain, P. K., Kaushik, S. K. and Vashisht, L. K., “On Stability of Banach Frames”, Bulletin of the Korean Mathematical Society, 44:1 (2007), 73–81 | DOI | MR | Zbl

[12] Gahler, S., “Lineare 2-Normierte Raume”, Mathematische Nachrichten, 28:1–2 (1964), 1–43 | DOI | MR | Zbl

[13] Gunawan, H. and Mashadi, M., “On $n$-Normed Spaces”, International Journal of Mathematics and Mathematical Sciences, 27:10 (2001), 631–639 | DOI | MR | Zbl

[14] Ghosh, P. and Samanta, T. K., “Construction of Frame Relative to $n$-Hilbert Space”, Journal of Linear and Topological Algebra, 10:02 (2021), 117–130 | Zbl

[15] Ghosh, P. and Samanta, T. K., “Introduction of Frame in Tensor Product of $n$-Hilbert Spaces”, Sahand Communication in Mathematical Analysis, 18:4 (2021), 1–18 | DOI | MR

[16] Ghosh, P. and Samanta, T. K., “Atomic Systems in $n$-Hilbert Spaces and their Tensor Products”, Journal Linear Topological Algebra, 10:04 (2021), 241–256 | Zbl

[17] Ghosh, P. and Samanta, T. K., “Representation of Uniform Boundedness Principle and Hahn-Banach Theorem in Linear $n$-Normed Space”, The Journal of Analysis, 30:2 (2022), 597–619 | DOI | MR | Zbl

[18] Singer, I., Bases in Banach Spaces, v. II, Springer-Verlag, New York–Heidelberg, 1981 | Zbl