Approximate solution of the nonlinear Fredholm integral equation of the second kind
Vladikavkazskij matematičeskij žurnal, Tome 25 (2023) no. 1, pp. 33-47 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article deals with the numerical treatment of nonlinear Fredholm integral equations of the second kind. The equation treated in this paper has particular kernel, in sense that it is composed of the product between two parts: a weakly singular part not depending on the solution and a nonlinear Fréchet differentiable part depending on our solution. The approximate solution proposed in this work is defined as an iterative sequence of Newton–Kantorovich type. To construct this solution, we use three numerical methods: the Newton–Kantorovich method to linearize our problem, the method of regularization with convolution and Fourier series expansion. It needs to obtain a finite rank sequence and “Hat functions projection” to deal with nonlinear term in the Newton–Kantorovich construction. We prove that this particular Newton-like sequence converges perfectly to the exact solution. In addition, we construct some numerical example to demonstrate its effectiveness in practice. The obtained numerical results confirm the accuracy of the theoretical results.
@article{VMJ_2023_25_1_a2,
     author = {H. Guebbai and M. Ghiat and W. Merchela and S. Segni and E. V. Stepanenko},
     title = {Approximate solution of the nonlinear {Fredholm} integral equation of the second kind},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {33--47},
     year = {2023},
     volume = {25},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2023_25_1_a2/}
}
TY  - JOUR
AU  - H. Guebbai
AU  - M. Ghiat
AU  - W. Merchela
AU  - S. Segni
AU  - E. V. Stepanenko
TI  - Approximate solution of the nonlinear Fredholm integral equation of the second kind
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2023
SP  - 33
EP  - 47
VL  - 25
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMJ_2023_25_1_a2/
LA  - ru
ID  - VMJ_2023_25_1_a2
ER  - 
%0 Journal Article
%A H. Guebbai
%A M. Ghiat
%A W. Merchela
%A S. Segni
%A E. V. Stepanenko
%T Approximate solution of the nonlinear Fredholm integral equation of the second kind
%J Vladikavkazskij matematičeskij žurnal
%D 2023
%P 33-47
%V 25
%N 1
%U http://geodesic.mathdoc.fr/item/VMJ_2023_25_1_a2/
%G ru
%F VMJ_2023_25_1_a2
H. Guebbai; M. Ghiat; W. Merchela; S. Segni; E. V. Stepanenko. Approximate solution of the nonlinear Fredholm integral equation of the second kind. Vladikavkazskij matematičeskij žurnal, Tome 25 (2023) no. 1, pp. 33-47. http://geodesic.mathdoc.fr/item/VMJ_2023_25_1_a2/

[1] Chandrasekhar S., Radiative Transfer, Dover Publ., N. Y., 1960, 393 pp. | MR

[2] Ahues M., d'Almeida F. D., Fernandes R. R., “Piecewise constant Galerkin approximations of wealkly singular integral equations”, Int. J. Pure Appl. Math., 4 (2009), 569–580 | MR | Zbl

[3] Amosov A. A., Youssef Y. E., “Error estimates of projection type methods for solving weakly singular integral equations”, J. Math. Sci., 216 (2016), 182–218 | DOI | MR | Zbl

[4] Atkinson K., Han W., Theoretical Numerical Analysis: a Functional Analysis Framework, Texts in Applied Mathematics, 39, Springer, N. Y., 2001, 342–404 | DOI | MR

[5] Debbar R., Guebbai H., Zereg Z., “Improving the convergence order of the regularization method for Fredholm integral equations of the second kind”, Appl. Math. Comput., 289 (2016), 204–213 | DOI | MR | Zbl

[6] Guebbai H., Grammont L., “A new degenerate kernel method for a weakly singular integral equation”, Appl. Math. Comput., 230 (2014), 414–427 | DOI | MR | Zbl

[7] Benrabia N., Guebbai H., “On the regularization method for Fredholm integral equations with odd weakly singular kernel”, Comp. Appl. Math., 37 (2018), 5162–5174 | DOI | MR | Zbl

[8] Lemita S., Guebbai H., Sedka I., Aissaoui M. Z., “New Method for the Numerical Solution of the Fredholm Linear Integral Equation on a Large Interval”, Vestn. rossiiskikh un-tov. Matematika, 25:132 (2020), 387–400 | DOI

[9] Guebbai H., “Regularization and Fourier Series for Fredholm Integral Equations of the Second Kind with a Weakly Singular Kernel”, Numer. Funct. Anal. Optim., 39:1 (2017), 1–10 | DOI | MR

[10] Ahues A., Largillier A., Titaud O., “The roles of a weak singularity and the grid uniformity in relative error bounds”, Numer. Funct. Anal. Optim., 22:7–8 (2001), 789–814 | DOI | MR | Zbl

[11] Amosov A., Ahues M., Largillier A., “Superconvergence of some projection approximations for weakly singular integral equations using general grids”, SIAM J. Numer. Anal., 47:1 (2009), 646–674 | DOI | MR | Zbl

[12] Dung V. T., Ha Q. T., “Approximate solution for integral equations involving linear Toeplitz plus Hankel parts”, Comp. Appl. Math., 40 (2021), 172 | DOI | MR | Zbl

[13] Assari P., Dehghan M., “On the numerical solution of nonlinear integral equations on non-rectangular domains utilizing thin plate spline collocation method”, Proc. Math. Sci., 129 (2019), 83 | DOI | MR | Zbl

[14] Jain S., Jain S., “Fuzzy generalized weak contraction and its application to Fredholm non-linear integral equation in fuzzy metric space”, J. Anal., 29 (2021), 619–632 | DOI | MR | Zbl

[15] Chapko R., Mindrinos L., “On the non-linear integral equation approach for an inverse boundary value problem for the heat equation”, J. Eng. Math., 119 (2019), 255–268 | DOI | MR | Zbl

[16] Lalli F., Campana E., Bulgarelli U., “A Numerical Solution of II Kind Fredholm Equations: A Naval Hydrodynamics Application”, Boundary Integral Methods, eds. Morino, L., Piva, R., Springer-Verlag, Berlin–Heidelberg, 1991, 320–327 | DOI

[17] Evans L. C., Partial Differential Equations, Graduate Studies in Mathematics, 19, American Mathematical Society, 1998 | MR | Zbl

[18] Linz P., Analytical and Numerical Methods for Volterra Equations, SIAM, Philadelphia, 1985 | DOI | MR | Zbl

[19] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1984, 750 pp. | MR

[20] Bounaya M. C., Lemita S., Ghiat M., Aissaoui M. Z., “On a nonlinear integro-differential equation of Fredholm type”, International Journal of Computing Science and Mathematics, 13:2 (2021), 194–205 | DOI | MR

[21] Ahues M., “Newton methods with Hölder derivative”, Numer. Func. Anal. Opt., 25:5–6 (2004), 379–395 | DOI | MR | Zbl

[22] Altürk A., “Numerical solution of linear and nonlinear Fredholm integral equations by using weighted mean-value theorem”, SpringerPlus, 5:1962 (2016) | DOI

[23] Hammad D. A., Semary Mourad S., Khattab Ahmed G., “Ten non-polynomial cubic splines for some classes of Fredholm integral equations”, Ain Shams Eng. J., 13:4 (2022), 101666 | DOI

[24] Maleknejad K., Karami M., “Numerical solution of non-linear Fredholm integral equations by using multiwavelets in the Petrov-Galerkin method”, Appl. Math. Comp., 168:1 (2005), 102–110 | DOI | MR | Zbl

[25] Ghiat M., Guebbai H., Kurulay M., Segni S., “On the weakly singular integro-differential nonlinear Volterra equation depending in acceleration term”, Comp. Appl. Math., 39 (2020), 206 | DOI | MR | Zbl

[26] Ghiat M., Guebbai H., “Analytical and numerical study for an integro-differential nonlinear volterra equation with weakly singular kernel”, Comp. Appl. Math., 37 (2018), 4661–4674 | DOI | MR | Zbl

[27] Giat M., Kamush S., Khellaf A., Merchela V., “Ob odnoi sisteme integralnykh uravnenii Volterra so slabo singulyarnym yadrom”, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 193, 2021, 33–44 | DOI

[28] Ahues A., Largillier A., Limaye B. V., Spectral Computations for Bounded Operators, Chapman and Hall/CRC, Boca Raton, 2001 | MR | Zbl