@article{VMJ_2023_25_1_a2,
author = {H. Guebbai and M. Ghiat and W. Merchela and S. Segni and E. V. Stepanenko},
title = {Approximate solution of the nonlinear {Fredholm} integral equation of the second kind},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {33--47},
year = {2023},
volume = {25},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2023_25_1_a2/}
}
TY - JOUR AU - H. Guebbai AU - M. Ghiat AU - W. Merchela AU - S. Segni AU - E. V. Stepanenko TI - Approximate solution of the nonlinear Fredholm integral equation of the second kind JO - Vladikavkazskij matematičeskij žurnal PY - 2023 SP - 33 EP - 47 VL - 25 IS - 1 UR - http://geodesic.mathdoc.fr/item/VMJ_2023_25_1_a2/ LA - ru ID - VMJ_2023_25_1_a2 ER -
%0 Journal Article %A H. Guebbai %A M. Ghiat %A W. Merchela %A S. Segni %A E. V. Stepanenko %T Approximate solution of the nonlinear Fredholm integral equation of the second kind %J Vladikavkazskij matematičeskij žurnal %D 2023 %P 33-47 %V 25 %N 1 %U http://geodesic.mathdoc.fr/item/VMJ_2023_25_1_a2/ %G ru %F VMJ_2023_25_1_a2
H. Guebbai; M. Ghiat; W. Merchela; S. Segni; E. V. Stepanenko. Approximate solution of the nonlinear Fredholm integral equation of the second kind. Vladikavkazskij matematičeskij žurnal, Tome 25 (2023) no. 1, pp. 33-47. http://geodesic.mathdoc.fr/item/VMJ_2023_25_1_a2/
[1] Chandrasekhar S., Radiative Transfer, Dover Publ., N. Y., 1960, 393 pp. | MR
[2] Ahues M., d'Almeida F. D., Fernandes R. R., “Piecewise constant Galerkin approximations of wealkly singular integral equations”, Int. J. Pure Appl. Math., 4 (2009), 569–580 | MR | Zbl
[3] Amosov A. A., Youssef Y. E., “Error estimates of projection type methods for solving weakly singular integral equations”, J. Math. Sci., 216 (2016), 182–218 | DOI | MR | Zbl
[4] Atkinson K., Han W., Theoretical Numerical Analysis: a Functional Analysis Framework, Texts in Applied Mathematics, 39, Springer, N. Y., 2001, 342–404 | DOI | MR
[5] Debbar R., Guebbai H., Zereg Z., “Improving the convergence order of the regularization method for Fredholm integral equations of the second kind”, Appl. Math. Comput., 289 (2016), 204–213 | DOI | MR | Zbl
[6] Guebbai H., Grammont L., “A new degenerate kernel method for a weakly singular integral equation”, Appl. Math. Comput., 230 (2014), 414–427 | DOI | MR | Zbl
[7] Benrabia N., Guebbai H., “On the regularization method for Fredholm integral equations with odd weakly singular kernel”, Comp. Appl. Math., 37 (2018), 5162–5174 | DOI | MR | Zbl
[8] Lemita S., Guebbai H., Sedka I., Aissaoui M. Z., “New Method for the Numerical Solution of the Fredholm Linear Integral Equation on a Large Interval”, Vestn. rossiiskikh un-tov. Matematika, 25:132 (2020), 387–400 | DOI
[9] Guebbai H., “Regularization and Fourier Series for Fredholm Integral Equations of the Second Kind with a Weakly Singular Kernel”, Numer. Funct. Anal. Optim., 39:1 (2017), 1–10 | DOI | MR
[10] Ahues A., Largillier A., Titaud O., “The roles of a weak singularity and the grid uniformity in relative error bounds”, Numer. Funct. Anal. Optim., 22:7–8 (2001), 789–814 | DOI | MR | Zbl
[11] Amosov A., Ahues M., Largillier A., “Superconvergence of some projection approximations for weakly singular integral equations using general grids”, SIAM J. Numer. Anal., 47:1 (2009), 646–674 | DOI | MR | Zbl
[12] Dung V. T., Ha Q. T., “Approximate solution for integral equations involving linear Toeplitz plus Hankel parts”, Comp. Appl. Math., 40 (2021), 172 | DOI | MR | Zbl
[13] Assari P., Dehghan M., “On the numerical solution of nonlinear integral equations on non-rectangular domains utilizing thin plate spline collocation method”, Proc. Math. Sci., 129 (2019), 83 | DOI | MR | Zbl
[14] Jain S., Jain S., “Fuzzy generalized weak contraction and its application to Fredholm non-linear integral equation in fuzzy metric space”, J. Anal., 29 (2021), 619–632 | DOI | MR | Zbl
[15] Chapko R., Mindrinos L., “On the non-linear integral equation approach for an inverse boundary value problem for the heat equation”, J. Eng. Math., 119 (2019), 255–268 | DOI | MR | Zbl
[16] Lalli F., Campana E., Bulgarelli U., “A Numerical Solution of II Kind Fredholm Equations: A Naval Hydrodynamics Application”, Boundary Integral Methods, eds. Morino, L., Piva, R., Springer-Verlag, Berlin–Heidelberg, 1991, 320–327 | DOI
[17] Evans L. C., Partial Differential Equations, Graduate Studies in Mathematics, 19, American Mathematical Society, 1998 | MR | Zbl
[18] Linz P., Analytical and Numerical Methods for Volterra Equations, SIAM, Philadelphia, 1985 | DOI | MR | Zbl
[19] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1984, 750 pp. | MR
[20] Bounaya M. C., Lemita S., Ghiat M., Aissaoui M. Z., “On a nonlinear integro-differential equation of Fredholm type”, International Journal of Computing Science and Mathematics, 13:2 (2021), 194–205 | DOI | MR
[21] Ahues M., “Newton methods with Hölder derivative”, Numer. Func. Anal. Opt., 25:5–6 (2004), 379–395 | DOI | MR | Zbl
[22] Altürk A., “Numerical solution of linear and nonlinear Fredholm integral equations by using weighted mean-value theorem”, SpringerPlus, 5:1962 (2016) | DOI
[23] Hammad D. A., Semary Mourad S., Khattab Ahmed G., “Ten non-polynomial cubic splines for some classes of Fredholm integral equations”, Ain Shams Eng. J., 13:4 (2022), 101666 | DOI
[24] Maleknejad K., Karami M., “Numerical solution of non-linear Fredholm integral equations by using multiwavelets in the Petrov-Galerkin method”, Appl. Math. Comp., 168:1 (2005), 102–110 | DOI | MR | Zbl
[25] Ghiat M., Guebbai H., Kurulay M., Segni S., “On the weakly singular integro-differential nonlinear Volterra equation depending in acceleration term”, Comp. Appl. Math., 39 (2020), 206 | DOI | MR | Zbl
[26] Ghiat M., Guebbai H., “Analytical and numerical study for an integro-differential nonlinear volterra equation with weakly singular kernel”, Comp. Appl. Math., 37 (2018), 4661–4674 | DOI | MR | Zbl
[27] Giat M., Kamush S., Khellaf A., Merchela V., “Ob odnoi sisteme integralnykh uravnenii Volterra so slabo singulyarnym yadrom”, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 193, 2021, 33–44 | DOI
[28] Ahues A., Largillier A., Limaye B. V., Spectral Computations for Bounded Operators, Chapman and Hall/CRC, Boca Raton, 2001 | MR | Zbl