Approximate solution of the nonlinear Fredholm integral equation of the second kind
Vladikavkazskij matematičeskij žurnal, Tome 25 (2023) no. 1, pp. 33-47
Voir la notice de l'article provenant de la source Math-Net.Ru
This article deals with the numerical treatment of nonlinear Fredholm integral equations of the second kind. The equation treated in this paper has particular kernel, in sense that it is composed of the product between two parts: a weakly singular part not depending on the solution and a nonlinear Fréchet differentiable part depending on our solution. The approximate solution proposed in this work is defined as an iterative sequence of Newton–Kantorovich type. To construct this solution, we use three numerical methods: the Newton–Kantorovich method to linearize our problem, the method of regularization with convolution and Fourier series expansion. It needs to obtain a finite rank sequence and “Hat functions projection” to deal with nonlinear term in the Newton–Kantorovich construction. We prove that this particular Newton-like sequence converges perfectly to the exact solution. In addition, we construct some numerical example to demonstrate its effectiveness in practice. The obtained numerical results confirm the accuracy of the theoretical results.
@article{VMJ_2023_25_1_a2,
author = {H. Guebbai and M. Ghiat and W. Merchela and S. Segni and E. V. Stepanenko},
title = {Approximate solution of the nonlinear {Fredholm} integral equation of the second kind},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {33--47},
publisher = {mathdoc},
volume = {25},
number = {1},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2023_25_1_a2/}
}
TY - JOUR AU - H. Guebbai AU - M. Ghiat AU - W. Merchela AU - S. Segni AU - E. V. Stepanenko TI - Approximate solution of the nonlinear Fredholm integral equation of the second kind JO - Vladikavkazskij matematičeskij žurnal PY - 2023 SP - 33 EP - 47 VL - 25 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMJ_2023_25_1_a2/ LA - ru ID - VMJ_2023_25_1_a2 ER -
%0 Journal Article %A H. Guebbai %A M. Ghiat %A W. Merchela %A S. Segni %A E. V. Stepanenko %T Approximate solution of the nonlinear Fredholm integral equation of the second kind %J Vladikavkazskij matematičeskij žurnal %D 2023 %P 33-47 %V 25 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMJ_2023_25_1_a2/ %G ru %F VMJ_2023_25_1_a2
H. Guebbai; M. Ghiat; W. Merchela; S. Segni; E. V. Stepanenko. Approximate solution of the nonlinear Fredholm integral equation of the second kind. Vladikavkazskij matematičeskij žurnal, Tome 25 (2023) no. 1, pp. 33-47. http://geodesic.mathdoc.fr/item/VMJ_2023_25_1_a2/