Refined spectral properties of Dirichlet and Neumann problems for the Laplace operator in a rectangular domain
Vladikavkazskij matematičeskij žurnal, Tome 25 (2023) no. 1, pp. 20-32 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In one-dimensional boundary value spectral problems the dimensions of eigen-subspaces are not greater than some known number (as a rule 1 or 2). In multidimensional self-adjoint problems with a discrete spectrum the sequence of multiplicities can be unbound despite the finite dimensions of all eigen-subspaces. It is realized even for classical boundary value problems solved by the method of separation of variables. In the case of Dirichlet or Neumann problems for the Laplace operator given in a rectangular domain $\Omega=(0;a)\times(0;b)$ the formula $\lambda_{km} = \big(\frac{\pi k}{a}\big)^2 + \big(\frac{\pi m}{b}\big)^2$ for eigenvalues is well known (indexes $k, m$ are correspondingly positive or nonnegative integers for Dirichlet or Neumann problem). The problem of multiplicities reduces to counting the number of ordered pairs $(k, m)$ which determine the same number $\lambda_{km}$. Using classical and new results of number theory and the theory of diophantine approximations we study problems of relative arrangement, multiplicities and asymptotic behavior of eigenvalues $\lambda_{km}$ depending on parameters $a$ and $b$. In the case of square domain ($a=b$) we formulate explicit algorithm for counting the multiplicities of eigenvalues based on decomposition of a natural number into prime factors and counting devisors of the form $4k+1$. For a rectangular domains we establish relationship between the distribution of multiplicities and rationality of numbers $f:=a/b$ and $f^2$. For the case $f, f^2 \not\in \mathbb{Q}$ we prove that all eigenvalues are simple but infinitely many pairs of them are located at an arbitrarily close distance. Using the refined estimation of the remainder in the Gauss circle problem we establish Weyl's asymptotic formula with the first two members and qualified assessment of residual member.
@article{VMJ_2023_25_1_a1,
     author = {V. I. Voytitsky and A. S. Prudkii},
     title = {Refined spectral properties of {Dirichlet} and {Neumann} problems for the {Laplace} operator in a rectangular domain},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {20--32},
     year = {2023},
     volume = {25},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2023_25_1_a1/}
}
TY  - JOUR
AU  - V. I. Voytitsky
AU  - A. S. Prudkii
TI  - Refined spectral properties of Dirichlet and Neumann problems for the Laplace operator in a rectangular domain
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2023
SP  - 20
EP  - 32
VL  - 25
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMJ_2023_25_1_a1/
LA  - ru
ID  - VMJ_2023_25_1_a1
ER  - 
%0 Journal Article
%A V. I. Voytitsky
%A A. S. Prudkii
%T Refined spectral properties of Dirichlet and Neumann problems for the Laplace operator in a rectangular domain
%J Vladikavkazskij matematičeskij žurnal
%D 2023
%P 20-32
%V 25
%N 1
%U http://geodesic.mathdoc.fr/item/VMJ_2023_25_1_a1/
%G ru
%F VMJ_2023_25_1_a1
V. I. Voytitsky; A. S. Prudkii. Refined spectral properties of Dirichlet and Neumann problems for the Laplace operator in a rectangular domain. Vladikavkazskij matematičeskij žurnal, Tome 25 (2023) no. 1, pp. 20-32. http://geodesic.mathdoc.fr/item/VMJ_2023_25_1_a1/

[1] Savchuk A. M., Shkalikov A. A., “O sobstvennykh znacheniyakh operatora Shturma — Liuvillya s potentsialami iz prostranstv Soboleva”, Mat. zametki, 80:6 (2006), 864–884 | DOI | Zbl

[2] Levitan B. M., Sargsyan I. S., Operatory Shturma — Liuvillya i Diraka, Nauka, M., 1988, 208 pp. | MR

[3] Pikulin V. P., Pokhozhaev S. I., Prakticheskii kurs po uravneniyam matematicheskoi fiziki, MTsNMO, M., 2004, 208 pp.

[4] Antunes P. R. S., Freitas P., “Optimal spectral rectangles and lattice ellipses”, Proc. Royal Soc. A: Math. Phys. Eng. Sci., 469 (2013) | DOI | MR | Zbl

[5] Birman M. Sh., Solomyak M. Z., “Asimptotika spektra differentsialnykh uravnenii”, Itogi nauki i tekhn. Ser. Mat. analiz, 14, 1977, 5–58 | Zbl

[6] Ivrii V., “Sharp spectral asymptotics for operators with irregular coefficients. II. Domains with boundary and degeneration”, Comm. Partial Differ. Equ., 28:1–2 (2003), 103–128 | DOI | MR | Zbl

[7] Safarov Yu. G., Filonov N. D., “Asimptoticheskie otsenki raznosti schitayuschikh funktsii zadach Dirikhle i Neimana”, Funkts. analiz i ego pril., 44:4 (2010), 54–64 | DOI | MR | Zbl

[8] Huxley M. N., “Exponential sums and lattice points III”, Proc. London Math. Soc., 87:3 (2003), 591–609 | DOI | MR | Zbl

[9] Jacobi S. G. J., Fundamenta Nova Theoriae Functionum Ellipticarum, Sumtibus fratrumBorntraeger, 1829, 207 pp.

[10] Bagis N. D., Glasser M. L., On the Number of Representation of Integers into Quadratic Forms, 2014, arXiv: 1406.0466v5 [math.GM]

[11] Bukhshtab A. A., Teoriya chisel, Prosveschenie, M., 1960, 375 pp. | MR

[12] Leng S., Vvedenie v teoriyu diofantovykh priblizhenii, Mir, M., 1970, 102 pp.

[13] Shmidt V., Diofantovy priblizheniya, Mir, M., 1983, 232 pp.

[14] Nowak W. G., “Primitive lattice points inside an ellipse”, Czech. Math. J., 55:2 (2005), 519–530 | DOI | MR | Zbl

[15] Bleher P., “On the distribution of the number of lattice points inside a family of convex ovals”, Duke Math. J., 67:3 (1992), 461–481 | DOI | MR | Zbl

[16] Nowak W. G., “On the mean lattice point discrepancy of a convex disc”, Arch. Math. (Basel), 78:3 (2002), 241–248 | DOI | MR | Zbl

[17] Krätzel E., “Lattice points in planar convex domains”, Monatsh. Math., 143:2 (2004), 145–162 | DOI | MR | Zbl

[18] Khooli K., Primenenie metodov resheta v teorii chisel, Nauka, M., 1987, 136 pp.

[19] Hardy G. H., “On the expression of a number as the sum of two square”, Quarterly J. Math., 46 (1915), 263–283 | MR

[20] Voititskii V. I., “O kratnostyakh i asimptotike sobstvennykh znachenii zadach Dirikhle i Neimana dlya operatora Laplasa v pryamougolnike”, Mezhdunar. konf., posvyaschennaya vydayuschemusya matematiku I. G. Petrovskomu (24-e sovmestnoe zasedanie MMO i seminara im. I. G. Petrovskogo), Tez. dokl., Izd-vo MGU, M., 2021, 195–197