@article{VMJ_2023_25_1_a1,
author = {V. I. Voytitsky and A. S. Prudkii},
title = {Refined spectral properties of {Dirichlet} and {Neumann} problems for the {Laplace} operator in a rectangular domain},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {20--32},
year = {2023},
volume = {25},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2023_25_1_a1/}
}
TY - JOUR AU - V. I. Voytitsky AU - A. S. Prudkii TI - Refined spectral properties of Dirichlet and Neumann problems for the Laplace operator in a rectangular domain JO - Vladikavkazskij matematičeskij žurnal PY - 2023 SP - 20 EP - 32 VL - 25 IS - 1 UR - http://geodesic.mathdoc.fr/item/VMJ_2023_25_1_a1/ LA - ru ID - VMJ_2023_25_1_a1 ER -
%0 Journal Article %A V. I. Voytitsky %A A. S. Prudkii %T Refined spectral properties of Dirichlet and Neumann problems for the Laplace operator in a rectangular domain %J Vladikavkazskij matematičeskij žurnal %D 2023 %P 20-32 %V 25 %N 1 %U http://geodesic.mathdoc.fr/item/VMJ_2023_25_1_a1/ %G ru %F VMJ_2023_25_1_a1
V. I. Voytitsky; A. S. Prudkii. Refined spectral properties of Dirichlet and Neumann problems for the Laplace operator in a rectangular domain. Vladikavkazskij matematičeskij žurnal, Tome 25 (2023) no. 1, pp. 20-32. http://geodesic.mathdoc.fr/item/VMJ_2023_25_1_a1/
[1] Savchuk A. M., Shkalikov A. A., “O sobstvennykh znacheniyakh operatora Shturma — Liuvillya s potentsialami iz prostranstv Soboleva”, Mat. zametki, 80:6 (2006), 864–884 | DOI | Zbl
[2] Levitan B. M., Sargsyan I. S., Operatory Shturma — Liuvillya i Diraka, Nauka, M., 1988, 208 pp. | MR
[3] Pikulin V. P., Pokhozhaev S. I., Prakticheskii kurs po uravneniyam matematicheskoi fiziki, MTsNMO, M., 2004, 208 pp.
[4] Antunes P. R. S., Freitas P., “Optimal spectral rectangles and lattice ellipses”, Proc. Royal Soc. A: Math. Phys. Eng. Sci., 469 (2013) | DOI | MR | Zbl
[5] Birman M. Sh., Solomyak M. Z., “Asimptotika spektra differentsialnykh uravnenii”, Itogi nauki i tekhn. Ser. Mat. analiz, 14, 1977, 5–58 | Zbl
[6] Ivrii V., “Sharp spectral asymptotics for operators with irregular coefficients. II. Domains with boundary and degeneration”, Comm. Partial Differ. Equ., 28:1–2 (2003), 103–128 | DOI | MR | Zbl
[7] Safarov Yu. G., Filonov N. D., “Asimptoticheskie otsenki raznosti schitayuschikh funktsii zadach Dirikhle i Neimana”, Funkts. analiz i ego pril., 44:4 (2010), 54–64 | DOI | MR | Zbl
[8] Huxley M. N., “Exponential sums and lattice points III”, Proc. London Math. Soc., 87:3 (2003), 591–609 | DOI | MR | Zbl
[9] Jacobi S. G. J., Fundamenta Nova Theoriae Functionum Ellipticarum, Sumtibus fratrumBorntraeger, 1829, 207 pp.
[10] Bagis N. D., Glasser M. L., On the Number of Representation of Integers into Quadratic Forms, 2014, arXiv: 1406.0466v5 [math.GM]
[11] Bukhshtab A. A., Teoriya chisel, Prosveschenie, M., 1960, 375 pp. | MR
[12] Leng S., Vvedenie v teoriyu diofantovykh priblizhenii, Mir, M., 1970, 102 pp.
[13] Shmidt V., Diofantovy priblizheniya, Mir, M., 1983, 232 pp.
[14] Nowak W. G., “Primitive lattice points inside an ellipse”, Czech. Math. J., 55:2 (2005), 519–530 | DOI | MR | Zbl
[15] Bleher P., “On the distribution of the number of lattice points inside a family of convex ovals”, Duke Math. J., 67:3 (1992), 461–481 | DOI | MR | Zbl
[16] Nowak W. G., “On the mean lattice point discrepancy of a convex disc”, Arch. Math. (Basel), 78:3 (2002), 241–248 | DOI | MR | Zbl
[17] Krätzel E., “Lattice points in planar convex domains”, Monatsh. Math., 143:2 (2004), 145–162 | DOI | MR | Zbl
[18] Khooli K., Primenenie metodov resheta v teorii chisel, Nauka, M., 1987, 136 pp.
[19] Hardy G. H., “On the expression of a number as the sum of two square”, Quarterly J. Math., 46 (1915), 263–283 | MR
[20] Voititskii V. I., “O kratnostyakh i asimptotike sobstvennykh znachenii zadach Dirikhle i Neimana dlya operatora Laplasa v pryamougolnike”, Mezhdunar. konf., posvyaschennaya vydayuschemusya matematiku I. G. Petrovskomu (24-e sovmestnoe zasedanie MMO i seminara im. I. G. Petrovskogo), Tez. dokl., Izd-vo MGU, M., 2021, 195–197