@article{VMJ_2022_24_3_a8,
author = {S. S. Postnov},
title = {Optimal control problem for systems modelled by diffusion-wave equation},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {108--119},
year = {2022},
volume = {24},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2022_24_3_a8/}
}
S. S. Postnov. Optimal control problem for systems modelled by diffusion-wave equation. Vladikavkazskij matematičeskij žurnal, Tome 24 (2022) no. 3, pp. 108-119. http://geodesic.mathdoc.fr/item/VMJ_2022_24_3_a8/
[1] Mophou, G. M., “Optimal Control of Fractional Diffusion Equation”, Computational and Applied Mathematics, 61:1 (2010), 68–78 | DOI
[2] Tang, Q. and Ma, Q., “Variational Formulation and Optimal Control of Fractional Diffusion Equations with Caputo Derivatives”, Advances in Difference Equations, 2015, 283 | DOI
[3] Zhou, Z. and Gong, W., “Finite Element Approximation of Optimal Control Problems Governed by Time Fractional Diffusion Equation”, Computational and Applied Mathematics, 71:1 (2016), 301–318 | DOI
[4] Kilbas, A. A., Srivastava, H. M. and Trujillo, J. J., Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006, 540 pp.
[5] Butkovskii, A. G., Distributed Control Systems, American Elsevier, New York, 1969, 446 pp.
[6] Sandev, T. and Tomovski, Z., “The General Time Fractional Wave Equation for a Vibrating String”, Journal of Physics A: Mathematical and Theoretical, 43:5 (2010), 055204 | DOI
[7] Agrawal, O. P., “Fractional Variational Calculus in Terms of Riesz Fractional Derivatives”, Journal of Physics A: Mathematical and Theoretical, 40:24 (2007), 6287–6303 | DOI
[8] Kubyshkin, V. A. and Postnov, S. S., “Time-Optimal Boundary Control for Systems Defined by a Fractional Order Diffusion Equation”, Automation and Remote Control, 79:5 (2018), 884–896 | DOI