A note on periodic rings
Vladikavkazskij matematičeskij žurnal, Tome 23 (2021) no. 4, pp. 109-111

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a new and non-trivial characterization of periodic rings (that are those rings $R$ for which, for each element $x$ in $R$, there exists two different integers $m$, $n$ strictly greater than $1$ with the property $x^m=x^n$) in terms of nilpotent elements which supplies recent results in this subject by Cui–Danchev published in (J. Algebra Appl., 2020) and by Abyzov–Tapkin published in (J. Algebra Appl., 2022). Concretely, we state and prove the slightly surprising fact that an arbitrary ring $R$ is periodic if, and only if, for every element $x$ from $R$, there are integers $m>1$ and $n>1$ with $m\not= n$ such that the difference $x^m-x^n$ is a nilpotent.
@article{VMJ_2021_23_4_a11,
     author = {P. V. Danchev},
     title = {A note on periodic rings},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {109--111},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2021_23_4_a11/}
}
TY  - JOUR
AU  - P. V. Danchev
TI  - A note on periodic rings
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2021
SP  - 109
EP  - 111
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2021_23_4_a11/
LA  - en
ID  - VMJ_2021_23_4_a11
ER  - 
%0 Journal Article
%A P. V. Danchev
%T A note on periodic rings
%J Vladikavkazskij matematičeskij žurnal
%D 2021
%P 109-111
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2021_23_4_a11/
%G en
%F VMJ_2021_23_4_a11
P. V. Danchev. A note on periodic rings. Vladikavkazskij matematičeskij žurnal, Tome 23 (2021) no. 4, pp. 109-111. http://geodesic.mathdoc.fr/item/VMJ_2021_23_4_a11/