Increasing unions of Stein spaces with singularities
Vladikavkazskij matematičeskij žurnal, Tome 23 (2021) no. 1, pp. 5-10

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that if $X$ is a Stein space and, if $\Omega\subset X$ is exhaustable by a sequence $\Omega_{1}\subset\Omega_{2}\subset\ldots\subset\Omega_{n}\subset\dots$ of open Stein subsets of $X$, then $\Omega$ is Stein. This generalizes a well-known result of Behnke and Stein which is obtained for $X=\mathbb{C}^{n}$ and solves the union problem, one of the most classical questions in Complex Analytic Geometry. When $X$ has dimension $2$, we prove that the same result follows if we assume only that $\Omega\subset\subset X$ is a domain of holomorphy in a Stein normal space. It is known, however, that if $X$ is an arbitrary complex space which is exhaustable by an increasing sequence of open Stein subsets $X_{1}\subset X_{2}\subset\dots\subset X_{n}\subset\dots$, it does not follow in general that $X$ is holomorphically-convex or holomorphically-separate (even if $X$ has no singularities). One can even obtain $2$-dimensional complex manifolds on which all holomorphic functions are constant.
@article{VMJ_2021_23_1_a0,
     author = {Y. Alaoui},
     title = {Increasing unions of {Stein} spaces with singularities},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {5--10},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2021_23_1_a0/}
}
TY  - JOUR
AU  - Y. Alaoui
TI  - Increasing unions of Stein spaces with singularities
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2021
SP  - 5
EP  - 10
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2021_23_1_a0/
LA  - en
ID  - VMJ_2021_23_1_a0
ER  - 
%0 Journal Article
%A Y. Alaoui
%T Increasing unions of Stein spaces with singularities
%J Vladikavkazskij matematičeskij žurnal
%D 2021
%P 5-10
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2021_23_1_a0/
%G en
%F VMJ_2021_23_1_a0
Y. Alaoui. Increasing unions of Stein spaces with singularities. Vladikavkazskij matematičeskij žurnal, Tome 23 (2021) no. 1, pp. 5-10. http://geodesic.mathdoc.fr/item/VMJ_2021_23_1_a0/