Tosha-degree equivalence signed graphs
Vladikavkazskij matematičeskij žurnal, Tome 22 (2020) no. 2, pp. 48-52 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Tosha-degree of an edge $\alpha $ in a graph $\Gamma$ without multiple edges, denoted by $T(\alpha)$, is the number of edges adjacent to $\alpha$ in $\Gamma$, with self-loops counted twice. A signed graph (marked graph) is an ordered pair $\Sigma=(\Gamma,\sigma)$ ($\Sigma =(\Gamma, \mu)$), where $\Gamma=(V,E)$ is a graph called the underlying graph of $\Sigma$ and $\sigma : E \rightarrow \{+,-\}$ ($\mu : V \rightarrow \{+,-\}$) is a function. In this paper, we define the Tosha-degree equivalence signed graph of a given signed graph and offer a switching equivalence characterization of signed graphs that are switching equivalent to Tosha-degree equivalence signed graphs and $ k^{th}$ iterated Tosha-degree equivalence signed graphs. It is shown that for any signed graph $\Sigma$, its Tosha-degree equivalence signed graph $T(\Sigma)$ is balanced and we offer a structural characterization of Tosha-degree equivalence signed graphs.
@article{VMJ_2020_22_2_a4,
     author = {R. Rajendra and P. Siva Kota Reddy},
     title = {Tosha-degree equivalence signed graphs},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {48--52},
     year = {2020},
     volume = {22},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2020_22_2_a4/}
}
TY  - JOUR
AU  - R. Rajendra
AU  - P. Siva Kota Reddy
TI  - Tosha-degree equivalence signed graphs
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2020
SP  - 48
EP  - 52
VL  - 22
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMJ_2020_22_2_a4/
LA  - en
ID  - VMJ_2020_22_2_a4
ER  - 
%0 Journal Article
%A R. Rajendra
%A P. Siva Kota Reddy
%T Tosha-degree equivalence signed graphs
%J Vladikavkazskij matematičeskij žurnal
%D 2020
%P 48-52
%V 22
%N 2
%U http://geodesic.mathdoc.fr/item/VMJ_2020_22_2_a4/
%G en
%F VMJ_2020_22_2_a4
R. Rajendra; P. Siva Kota Reddy. Tosha-degree equivalence signed graphs. Vladikavkazskij matematičeskij žurnal, Tome 22 (2020) no. 2, pp. 48-52. http://geodesic.mathdoc.fr/item/VMJ_2020_22_2_a4/

[1] Harary F., Graph Theory, Addison Wesley, Reading, Mass., 1972 | MR

[2] Rajendra R., Siva Kota Reddy P., “Tosha-Degree of an Edge in a Graph”, Southeast Asian Bull. Math., 45 (2021) (to appear)

[3] Harary F., “On the Notion of Balance of a Sigraph”, Michigan Mathematical Journal, 2 (1953), 143–146 | DOI | MR

[4] Sampathkumar E., “Point Signed and Line Signed Graphs”, National Academy Science Letters, 7:3 (1984), 91–93 | MR | Zbl

[5] Abelson R. P., Rosenberg M. J., “Symoblic Psychologic: A Model of Attitudinal Cognition”, Behavioral Sciences, 3 (1958), 1–13

[6] Zaslavsky T., “Signed Graphs”, Discrete Applied Mathematics, 4:1 (1982), 47–74 | DOI | MR | Zbl

[7] Harary F., “Structural Duality”, Behavioral Sciences, 2:4 (1957), 255–265 | DOI | MR