Topological aspects boron triangular nanotube and boron-$\alpha$ nanotube
Vladikavkazskij matematičeskij žurnal, Tome 22 (2020) no. 1, pp. 66-77 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Topological graph indices have been used in a lot of areas to study required properties of different objects such as atoms and molecules. Such indices have been described and studied by many mathematicians and chemists since most graphs are generated from molecules by replacing each atom with a vertex and each chemical bond with an edge. These indices are also topological graph invariants measuring several chemical, physical, biological, pharmacological, pharmaceutical, etc. properties of graphs corresponding to real life situations. The degree-based topological indices are used to correlate the physical and chemical properties of a molecule with its chemical structure. Boron nanotubular structures are high-interest materials due to the presence of multicenter bonds and have novel electronic properties. These materials have some important issues in nanodevice applications like mechanical and thermal stability. Therefore, they require theoretical studies on the other properties. In this paper, we compute the third Zagreb index, harmonic index, forgotten index, inverse sum index, modified Zagreb index and symmetric division deg index by applying subdivision and semi total point graph for boron triangular and boron-$\alpha$ nanotubes.
@article{VMJ_2020_22_1_a5,
     author = {P. Sh. Hemavathi and V. Lokesha and M. Manjunath and P. S. K. Reddy and R. Shruti},
     title = {Topological aspects boron triangular nanotube and boron-$\alpha$ nanotube},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {66--77},
     year = {2020},
     volume = {22},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2020_22_1_a5/}
}
TY  - JOUR
AU  - P. Sh. Hemavathi
AU  - V. Lokesha
AU  - M. Manjunath
AU  - P. S. K. Reddy
AU  - R. Shruti
TI  - Topological aspects boron triangular nanotube and boron-$\alpha$ nanotube
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2020
SP  - 66
EP  - 77
VL  - 22
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMJ_2020_22_1_a5/
LA  - en
ID  - VMJ_2020_22_1_a5
ER  - 
%0 Journal Article
%A P. Sh. Hemavathi
%A V. Lokesha
%A M. Manjunath
%A P. S. K. Reddy
%A R. Shruti
%T Topological aspects boron triangular nanotube and boron-$\alpha$ nanotube
%J Vladikavkazskij matematičeskij žurnal
%D 2020
%P 66-77
%V 22
%N 1
%U http://geodesic.mathdoc.fr/item/VMJ_2020_22_1_a5/
%G en
%F VMJ_2020_22_1_a5
P. Sh. Hemavathi; V. Lokesha; M. Manjunath; P. S. K. Reddy; R. Shruti. Topological aspects boron triangular nanotube and boron-$\alpha$ nanotube. Vladikavkazskij matematičeskij žurnal, Tome 22 (2020) no. 1, pp. 66-77. http://geodesic.mathdoc.fr/item/VMJ_2020_22_1_a5/

[1] Fath-Tabar M., “Old and New Zagreb Indices of Graphs”, MATCH Commun. Math. Comput. Chem., 65:1 (2011), 79–84 | MR | Zbl

[2] Fajtlowicz S., “On Conjectures of Graffiti-II”, Congr. Numer., 60 (1987), 187–197 | MR

[3] Furtula B., Gutman I., “A Forgotten Topological Index”, J. Math. Chem., 53:4 (2015), 1184–1190 | DOI | MR | Zbl

[4] Balaban A. T., “Highly Discriminating Distance Based Numerical Descriptor”, Chem. Phys. Lett., 89 (1982), 399–404 | DOI | MR

[5] Das K. C., Gutman I., “Some Properties of the Second Zagreb Index”, MATCH Commun. Math. Comput. Chem., 52 (2004), 103–112 | MR | Zbl

[6] Devillers J., Balaban A. T., Topological Indices and Related Descriptors in QSAR and QSPR, Gordon and Breach Science Publishers, 1999

[7] Milicevic A., Nikolic S., Trinajstic N., “On Reformulated Zagreb Indices”, Molecular Diversity, 8:4 (2004), 393–399 | DOI

[8] Alexander V., “Upper and Lower Bounds of Symmetric Division deg Index”, Iran. J. Math. Chem., 5:2 (2014), 91–98 | MR | Zbl

[9] Vukicevic D., Gasperov M., “Bond Additive Modeling 1. Adriatic Indices”, Croat. Chem. Acta, 83:3 (2010), 243–260

[10] Gupta C. K., Lokesha V., Shwetha S. B., Ranjini P. S., “On the Symmetric Division deg Index of Graph”, Southeast Asian Bull. Math., 40:1 (2016), 59–80 | MR | Zbl

[11] Kunstmann J., Quandt A., “Broad Boron Sheets and Boron Nanotubes: Anab Initiostudy of Structural, Electronic, and Mechanical Properties”, Phys. Rev. B, 74:3 (2006), 1–14 | DOI

[12] Battersby S., Boron Nanotubes Could Outperform Carbon. New Scientist, (accessed on 4 January 2008) www.newscientist.com

[13] Miller P., Boron Nanotubes Beat Carbon at its Own Game. Engadget, (accessed on 6 January 2008) www.engadget.com

[14] Lee R.K.F., Cox B.J., Hill J.M., “Ideal Polyhedral Model for Boron Nanotubes with Distinct Bond Lengths”, J. Phys. Chem. C, 113:46 (2009), 19794–19805 | DOI | MR

[15] Tang H., Ismail-Beigi S., “Novel Precursors for Boron Nanotubes, the Competition of Two-center and Three-center Bonding in Boron Sheets”, Phys. Rev. Lett., 99:11 (2007), 115501–115504 | DOI

[16] Manuel P., “Computational Aspects of Carbon and Boron Nanotubes”, Molecules, 15:12 (2010), 8709–8722 | DOI

[17] Liu J.-B., Shaker H., Nadeem I., Hussain M., “Topological Aspects of Boron Nanotubes”, Advances in Materials Science and Engineering, 2018, 1–11 | DOI