Hankel determinant of third kind for certain subclass of multivalent
Vladikavkazskij matematičeskij žurnal, Tome 22 (2020) no. 1, pp. 43-48

Voir la notice de l'article provenant de la source Math-Net.Ru

The objective of this paper is to obtain an upper bound (not sharp) to the third order Hankel determinant for certain subclass of multivalent ($p$-valent) analytic functions, defined in the open unit disc $E$. Using the Toeplitz determinants, we may estimate the Hankel determinant of third kind for the normalized multivalent analytic functions belongng to this subclass. But, using the technique adopted by Zaprawa [1], i. e., grouping the suitable terms in order to apply Lemmas due to Hayami [2], Livingston [3] and Pommerenke [4], we observe that, the bound estimated by the method adopted by Zaprawa is more refined than using upon applying the Toeplitz determinants.
@article{VMJ_2020_22_1_a3,
     author = {D. Vamshee Krishna and D. Shalini},
     title = {Hankel determinant of third kind for certain subclass of multivalent},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {43--48},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2020_22_1_a3/}
}
TY  - JOUR
AU  - D. Vamshee Krishna
AU  - D. Shalini
TI  - Hankel determinant of third kind for certain subclass of multivalent
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2020
SP  - 43
EP  - 48
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2020_22_1_a3/
LA  - en
ID  - VMJ_2020_22_1_a3
ER  - 
%0 Journal Article
%A D. Vamshee Krishna
%A D. Shalini
%T Hankel determinant of third kind for certain subclass of multivalent
%J Vladikavkazskij matematičeskij žurnal
%D 2020
%P 43-48
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2020_22_1_a3/
%G en
%F VMJ_2020_22_1_a3
D. Vamshee Krishna; D. Shalini. Hankel determinant of third kind for certain subclass of multivalent. Vladikavkazskij matematičeskij žurnal, Tome 22 (2020) no. 1, pp. 43-48. http://geodesic.mathdoc.fr/item/VMJ_2020_22_1_a3/