Hankel determinant of third kind for certain subclass of multivalent
Vladikavkazskij matematičeskij žurnal, Tome 22 (2020) no. 1, pp. 43-48 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The objective of this paper is to obtain an upper bound (not sharp) to the third order Hankel determinant for certain subclass of multivalent ($p$-valent) analytic functions, defined in the open unit disc $E$. Using the Toeplitz determinants, we may estimate the Hankel determinant of third kind for the normalized multivalent analytic functions belongng to this subclass. But, using the technique adopted by Zaprawa [1], i. e., grouping the suitable terms in order to apply Lemmas due to Hayami [2], Livingston [3] and Pommerenke [4], we observe that, the bound estimated by the method adopted by Zaprawa is more refined than using upon applying the Toeplitz determinants.
@article{VMJ_2020_22_1_a3,
     author = {D. Vamshee Krishna and D. Shalini},
     title = {Hankel determinant of third kind for certain subclass of multivalent},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {43--48},
     year = {2020},
     volume = {22},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2020_22_1_a3/}
}
TY  - JOUR
AU  - D. Vamshee Krishna
AU  - D. Shalini
TI  - Hankel determinant of third kind for certain subclass of multivalent
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2020
SP  - 43
EP  - 48
VL  - 22
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMJ_2020_22_1_a3/
LA  - en
ID  - VMJ_2020_22_1_a3
ER  - 
%0 Journal Article
%A D. Vamshee Krishna
%A D. Shalini
%T Hankel determinant of third kind for certain subclass of multivalent
%J Vladikavkazskij matematičeskij žurnal
%D 2020
%P 43-48
%V 22
%N 1
%U http://geodesic.mathdoc.fr/item/VMJ_2020_22_1_a3/
%G en
%F VMJ_2020_22_1_a3
D. Vamshee Krishna; D. Shalini. Hankel determinant of third kind for certain subclass of multivalent. Vladikavkazskij matematičeskij žurnal, Tome 22 (2020) no. 1, pp. 43-48. http://geodesic.mathdoc.fr/item/VMJ_2020_22_1_a3/

[1] Zaprawa P., “Third Hankel Determinants for Subclasses of Univalent Functions”, Mediterranean Journal of Mathematics, 14:1 (2017), 19 | DOI | MR | Zbl

[2] Hayami T., Owa S., “Generalized Hankel Determinant for Certain Classes”, International Journal of Mathematical Analysis, 4:52 (2010), 2573–2585 | MR | Zbl

[3] Livingston A.E., “The Coefficients of Multivalent Close-to-Convex Functions”, Proceedings of the American Mathematical Society, 21:3 (1969), 545–552 | DOI | MR | Zbl

[4] Pommerenke Ch., Univalent Functions, Vandenhoeck and Ruprecht, Gottingen, 1975 | MR | Zbl

[5] De Branges de Bourcia Louis, “A Proof of Bieberbach Conjecture”, Acta Math., 154:1–2 (1985), 137–152 | DOI | MR | Zbl

[6] Pommerenke Ch., “On the Coefficients and Hankel Determinants of Univalent Functions”, Journal of the London Mathematical Society, 41:s-1 (1966), 111–122 | DOI | MR | Zbl

[7] Janteng A., Halim S.A., Darus M., “Hankel Determinant for Starlike and Convex Functions”, International Journal of Mathematical Analysis, 1:13 (2007), 619–625 | MR | Zbl

[8] Janteng A., Halim S. A., Darus M., “Coefficient Inequality for a Function Whose Derivative has a Positive Real Part”, Journal of Inequalities in Pure and Applied Mathematics, 7:2, 50 | MR | Zbl

[9] Lee S.K., Ravichandran V., Supramaniam S., “Bounds for the Second Hankel Determinant of Certain Univalent Functions”, Journal of Inequalities and Applications, 2013, 281 | DOI | MR

[10] Vamshee Krishna D., “Coefficient Inequality for Certain $p$-Valent Analytic Functions”, Rocky Mountain Journal of Mathematics, 44:6 (2014), 1941–1959 | DOI | MR | Zbl

[11] Babalola K.O., “On $H_3 (1)$ Hankel Determinant for Some Classes of Univalent Functions”, Inequality Theory and Applications, 6, eds. Y. J. Cho, J. K. Kim, S. S. Dragomir, Nova Science Publishers, New York, 2010, 1–7 | MR

[12] Raza M., Malik S.N., “Upper Bound of Third Hankel Determinant for a Class of Analytic Functions Related with Lemniscate of Bernoulli”, Journal of Inequalities and Applications, 2013, 412 | DOI | MR | Zbl

[13] Sudharsan T.V., Vijayalakshmi S.P., Stephen B.A., “Third Hankel Determinant for a Subclass of Analytic Functions”, Malaya Journal of Matematik, 2:4 (2014), 438–444 | Zbl

[14] Bansal D., Maharana S., Prajapat J.K., “Third Order Hankel Determinant for Certain Univalent Functions”, Journal of the Korean Mathematical Society, 52:6 (2015), 1139–1148 | DOI | MR | Zbl

[15] Orhan H., Zaprawa P., “Third Hankel Determinants for Starloke and Convex Funxtions of Order Alpha”, Bulletin of the Korean Mathematical Society, 55:1 (2018), 165–173 | MR | Zbl

[16] Kowalczyk B., Lecko A., Sim Y.J., “The Sharp Bound for the Hankel Determinant of the Third Kind for Convex Functions”, Bulletin of the Australian Mathematical Society, 97:3 (2018), 435–445 | DOI | MR | Zbl

[17] Lecko A., Sim Y.J., Smiarowska B., “The Sharp Bound of the Hankel Determinant of the Third Kind for Starlike Functions of Order 1/2”, Complex Analysis and Operator Theory, 13:5 (2019), 2231–2238 | DOI | MR | Zbl

[18] Cho N.E., Kowalczyk B., Kwon O.S. at al., “The Bounds of Some Determinants for Starlike Functions of Order Alpha”, Bulletin of the Malaysian Mathematical Sciences Society, 41:1 (2018), 523–535 | DOI | MR | Zbl

[19] Vamshee Krishna D., Shalini D., “Bound on $H_3(1)$ Hankel Determinant for Pre-Starlike Functions of Order $\alpha$”, Proyecciones Journal of Math., 37:2 (2018), 305–315 | DOI | MR

[20] MacGregor T.H., “Functions Whose Derivative Have a Positive Real Part”, Transactions of the American Mathematical Society, 104:3 (1962), 532–537 | DOI | MR | Zbl

[21] Kilic Ö.Ö., “Sufficient Conditions for Subordination of Multivalent Functions”, Journal of Inequalities and Applications, 2008, 374756 | DOI | MR | Zbl

[22] Duren P.L., Univalent Functions, Grundlehren der Mathematischen Wissenschaften, 259, Springer-Verlag, New York, 1983 | MR | Zbl

[23] Libera R.J., Zlotkiewicz E.J., “Coefficient Bounds for the Inverse of a Function with Derivative in $\mathscr{P}$”, Proceedings of the American Mathematical Society, 87:2 (1983), 251–257 | DOI | MR | Zbl

[24] Libera R.J., Zlotkiewicz E. J., “Early Coefficients of the Inverse of a Regular Convex Function”, Proceedings of the American Mathematical Society, 85:2 (1982), 225–230 | DOI | MR | Zbl