Hankel determinant of third kind for certain subclass of multivalent
    
    
  
  
  
      
      
      
        
Vladikavkazskij matematičeskij žurnal, Tome 22 (2020) no. 1, pp. 43-48
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The objective of this paper is to obtain an upper bound (not sharp)
 to the third order Hankel determinant for certain subclass of multivalent
 ($p$-valent) analytic functions, defined in the open unit disc $E$. Using
 the Toeplitz determinants, we may estimate the Hankel determinant of third
 kind for the normalized multivalent analytic functions belongng to this
 subclass. But, using the technique adopted by Zaprawa [1], i. e.,
 grouping the suitable terms in order to apply Lemmas due to Hayami [2],
 Livingston [3] and Pommerenke [4], we observe that, the bound
 estimated by  the method adopted by Zaprawa is more refined than using upon
 applying the Toeplitz determinants.
			
            
            
            
          
        
      @article{VMJ_2020_22_1_a3,
     author = {D. Vamshee Krishna and D. Shalini},
     title = {Hankel determinant of third kind for certain subclass of multivalent},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {43--48},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2020_22_1_a3/}
}
                      
                      
                    TY - JOUR AU - D. Vamshee Krishna AU - D. Shalini TI - Hankel determinant of third kind for certain subclass of multivalent JO - Vladikavkazskij matematičeskij žurnal PY - 2020 SP - 43 EP - 48 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMJ_2020_22_1_a3/ LA - en ID - VMJ_2020_22_1_a3 ER -
D. Vamshee Krishna; D. Shalini. Hankel determinant of third kind for certain subclass of multivalent. Vladikavkazskij matematičeskij žurnal, Tome 22 (2020) no. 1, pp. 43-48. http://geodesic.mathdoc.fr/item/VMJ_2020_22_1_a3/
