A boolean valued analysis approach to conditional risk
Vladikavkazskij matematičeskij žurnal, Tome 21 (2019) no. 4, pp. 71-89 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

By means of the techniques of Boolean valued analysis, we provide a transfer principle between duality theory of classical convex risk measures and duality theory of conditional risk measures. Namely, a conditional risk measure can be interpreted as a classical convex risk measure within a suitable set-theoretic model. As a consequence, many properties of a conditional risk measure can be interpreted as basic properties of convex risk measures. This amounts to a method to interpret a theorem of dual representation of convex risk measures as a new theorem of dual representation of conditional risk measures. As an instance of application, we establish a general robust representation theorem for conditional risk measures and study different particular cases of it.
@article{VMJ_2019_21_4_a6,
     author = {J. M. Zapata},
     title = {A boolean valued analysis approach to conditional risk},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {71--89},
     year = {2019},
     volume = {21},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2019_21_4_a6/}
}
TY  - JOUR
AU  - J. M. Zapata
TI  - A boolean valued analysis approach to conditional risk
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2019
SP  - 71
EP  - 89
VL  - 21
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMJ_2019_21_4_a6/
LA  - en
ID  - VMJ_2019_21_4_a6
ER  - 
%0 Journal Article
%A J. M. Zapata
%T A boolean valued analysis approach to conditional risk
%J Vladikavkazskij matematičeskij žurnal
%D 2019
%P 71-89
%V 21
%N 4
%U http://geodesic.mathdoc.fr/item/VMJ_2019_21_4_a6/
%G en
%F VMJ_2019_21_4_a6
J. M. Zapata. A boolean valued analysis approach to conditional risk. Vladikavkazskij matematičeskij žurnal, Tome 21 (2019) no. 4, pp. 71-89. http://geodesic.mathdoc.fr/item/VMJ_2019_21_4_a6/

[1] Artzner P., Delbaen F., Eber J. M., Heath D., “Coherent Measures of Risk”, Mathematical Finance, 9:3 (1999), 203–228 | DOI | MR | Zbl

[2] Arai T., “Convex Risk Measures on Orlicz Spaces: Inf-Convolution and Shortfall”, Mathematics and Financial Economics, 3:2 (2010), 73–88 | DOI | MR | Zbl

[3] Arai T., Fukasawa M., “Convex Risk Measures for Good Deal Bounds”, Mathematical Finance, 24:3 (2014), 464–484 | DOI | MR | Zbl

[4] Biagini S., Frittelli M., “On the extension of the Namioka-Klee Theorem and on the Fatou Property for Risk Measures”, Optimality and Risk–Modern Trends in Mathematical Finance, 2009, 1–28 | DOI | MR | Zbl

[5] Cheridito P., Li T., “Dual Characterization of Properties of Risk Measures on Orlicz Hearts”, Mathematics and Financial Economics, 2:1 (2008), 29–55 | DOI | MR | Zbl

[6] Cheridito P., Li T., “Risk Measures on Orlicz Hearts”, Mathematical Finance, 19:2 (2009), 189–214 | DOI | MR | Zbl

[7] Delbaen F., “Risk Measures for Non-Integrable Random Variables”, Mathematical Finance, 19:2 (2009), 329–333 | DOI | MR | Zbl

[8] Farkas W., Koch-Medina P., Munari C., “Beyond Cash-Additive Risk Measures: When Changing the Numéraire Fails”, Finance and Stochastics, 18:1 (2014), 145–173 | DOI | MR | Zbl

[9] Frittelli M., Gianin E. R., “Putting Order in Risk Measures”, Journal of Banking Finance, 26:7 (2002), 1473–1486 | DOI

[10] Jouini E., Schachermayer W., Touzi N., “Law Invariant Risk Measures have the Fatou Property”, Advances in Mathematical Economics, 9 (2006), 49–72 | DOI | MR

[11] Kaina M., Rüschendorf L., “On Convex Risk Measures on $L^p$-Spaces”, Mathematical Methods of Operations Research, 69:3 (2009), 475–495 | DOI | MR | Zbl

[12] Orihuela J., Ruíz M., “Lebesgue Property for Convex Risk Measures on Orlicz Spaces”, Mathematics and Financial Economics, 6:1 (2012), 15–35 | DOI | MR | Zbl

[13] Artzner P., Delbaen F., Eber J.-M., Heath D., Ku H., “Coherent Multiperiod Risk Adjusted Values and Bellman's Principle”, Annals of Operations Research, 152:1 (2007), 5–22 | DOI | MR | Zbl

[14] Biagini S., Bion-Nadal J., “Dynamic Quasi Concave Performance Measures”, Journal of Mathematical Economics, 55 (2014), 143–153 | DOI | MR | Zbl

[15] Bielecki T. R., Cialenco I., Drapeau S., Karliczek M., “Dynamic Assessment Indices”, Stochastics, 88:1 (2016), 1–44 | DOI | MR | Zbl

[16] Bion-Nadal J., “Dynamic Risk Measures: Time Consistency and Risk Measures from BMO Martingales”, Finance and Stochastics, 12:2 (2008), 219–244 | DOI | MR | Zbl

[17] Detlefsen K., Scandolo G., “Conditional and Dynamic Convex Risk Measures”, Finance and Stochastics, 9:4 (2005), 539–561 | DOI | MR | Zbl

[18] Bion-Nadal J., Conditional Risk Measures and Robust Representation of Convex Conditional Risk Measures, Preprint, 2004

[19] Filipović D., Kupper M., Vogelpoth N., “Approaches to Conditional Risk”, SIAM Journal of Financial Mathematics, 3:1 (2012), 402–432 | DOI | MR | Zbl

[20] Föllmer H., Penner I., “Convex Risk Measures and the Dynamics of Their Penalty Functions”, Statistics Decisions, 24:1 (2006), 61–96 | DOI | MR

[21] Frittelli M., Maggis M., “Conditional Certainty Equivalent”, International Journal of Theoretical and Applied Finance, 14:1 (2011), 41–59 | DOI | MR | Zbl

[22] Frittelli M., Maggis M., “Complete Duality for Quasiconvex Dynamic Risk Measures on Modules of the $L^{p}$-Type”, Statistics Risk Modeling, 31:1 (2014), 103–128 | DOI | MR | Zbl

[23] Filipović D., Kupper M., Vogelpoth N., “Separation and Duality in Locally $L^0$-Convex Modules”, Journal of Functional Analysis, 256:12 (2009), 3996–4029 | DOI | MR | Zbl

[24] Cheridito P., Kupper M., Vogelpoth N., “Conditional Analysis on $\mathbb{R}^d$”, Set Optimization-State of the Art and Applications in Finance, Springer, Berlin–Heidelberg, 2015, 179–211 | DOI | MR | Zbl

[25] Guo T., “Relations Between Some Basic Results Derived from Two Kinds of Topologies for a Random Locally Convex Module”, Journal of Functional Analysis, 258:9 (2010), 3024–3047 | DOI | MR | Zbl

[26] Drapeau S., Jamneshan A., Karliczek M., Kupper M., “The Algebra of Conditional Sets, and the Concepts of Conditional Topology and Compactness”, Journal of Mathematical Analysis and Applications, 437:1 (2016), 561–589 | DOI | MR | Zbl

[27] Cerreia-Vioglio S, Kupper M., Maccheroni F., Marinacci M., Vogelpoth N., “Conditional $L_p$-Spaces and the Duality of Modules Over $f$-Algebras”, Journal of Mathematical Analysis and Applications, 444:2 (2016), 1045–1070 | DOI | MR | Zbl

[28] Cerreia-Vioglio S., Maccheroni F., Marinacci M., “Hilbert $A$-Modules”, Journal of Mathematical Analysis and Applications, 446:1 (2017), 970–1017 | DOI | MR | Zbl

[29] Eisele K-T., Taieb S., “Weak Topologies for Modules Over Rings of Bounded Random Variables”, Journal of Mathematical Analysis and Applications, 421:2 (2015), 1334–1357 | DOI | MR | Zbl

[30] Avilés A., Zapata J. M., “Boolean-Valued Models as a Foundation for Locally $L^0$-Convex Analysis and Conditional Set Theory”, Journal of Applied Logics, 5:1 (2018), 389–420 | MR

[31] Cohen P. J., Set Theory and the Continuum Hypothesis, W. A. Benjamin Inc., New York–Amsterdam, 1966 | MR | Zbl

[32] Gordon E. I., “Real Numbers in Boolean Valued Models of Set Theory and $K$-Spaces”, Dokl. Akad. Nauk SSSR, 237:4 (1977), 777–780 | MR

[33] Takeuti G., Two Applications of Logic to Mathematics, Princeton University Press, 1978 | MR | Zbl

[34] Kusraev A. G., Kutateladze S. S., Boolean Valued Analysis, Springer, Dordrecht, 2012 | DOI | MR

[35] Föllmer H., Schied A., Stochastic Finance. An Introduction in Discrete Time, 3rd edition, Walter de Gruyter, Berlin–New York, 2011 | MR

[36] Föllmer H., Schied A., “Convex Measures of Risk and Trading Constraints”, Finance and Stochastics, 6:4 (2002), 429–447 | DOI | MR | Zbl

[37] Frittelli M., Rosazza Gianin E., “Putting Order in Risk Measures”, Journal of Banking Finance, 26:7 (2002), 1473–1486 | DOI

[38] Zaanen A. C., Introduction to Operator Theory in Riesz Spaces, Springer Science Business Media, 2012 | DOI | MR

[39] Luxemburg W. A. J., Banach Function Spaces, PhD thesis, Delft, 1955 | MR | Zbl

[40] Zaanen A. C., Riesz Spaces, v. II, North-Holland, Amsterdam, 1983 | DOI | MR | Zbl

[41] Owari K., “On the Lebesgue Property of Monotone Convex Functions”, Mathematics and Financial Economics, 8:2 (2014), 159–167 | DOI | MR | Zbl

[42] Vogelpoth N., $L^0$-Convex Analysis and Conditional Risk Measures, PhD thesis, Uniwien, 2009

[43] Kusraev A. G., Vector Duality and its Applications, Nauka, Novosibirsk, 1985 (in Russian) | MR | Zbl

[44] Kusraev A. G., “Boolean valued Analysis of Duality Between Universally Complete Modules”, Dokl. Akad. Nauk SSSR, 267:5 (1982), 1049–1052 | MR | Zbl

[45] Jamneshan A., Zapata J. M., On Compactness in Topological $L^0$-Modules, 2017, arXiv: 2084347 | Zbl

[46] Delbaen F., “Differentiability Properties of Utility Functions”, Optimality and Risk-Modern Trends in Mathematical Finance, Springer, Berlin–Heidelberg, 2009, 39–48 | DOI | MR | Zbl

[47] Zapata J. M., A Boolean-valued Models Approach to $L^0$-Convex Analysis, Conditional Risk and Stochastic Control, PhD thesis, Universidad de Murcia, 2018

[48] Takeuti G., Two Applications of Logic to Mathematics, Publications of the Mathematical Society of Japan, Princeton University Press, 2015 | DOI | MR

[49] Gordon E. I., “$K$-Spaces in Boolean Valued Models of Set Theory”, Dokl. Akad. Nauk SSSR, 258:4 (1981), 777–780 | MR | Zbl

[50] Kusraev A. G., Kutateladze S. S., Boolean Valued Analysis: Selected Topics, Southern Mathematical Institute Press, Vladikavkaz, 2013