A boolean valued analysis approach to conditional risk
Vladikavkazskij matematičeskij žurnal, Tome 21 (2019) no. 4, pp. 71-89

Voir la notice de l'article provenant de la source Math-Net.Ru

By means of the techniques of Boolean valued analysis, we provide a transfer principle between duality theory of classical convex risk measures and duality theory of conditional risk measures. Namely, a conditional risk measure can be interpreted as a classical convex risk measure within a suitable set-theoretic model. As a consequence, many properties of a conditional risk measure can be interpreted as basic properties of convex risk measures. This amounts to a method to interpret a theorem of dual representation of convex risk measures as a new theorem of dual representation of conditional risk measures. As an instance of application, we establish a general robust representation theorem for conditional risk measures and study different particular cases of it.
@article{VMJ_2019_21_4_a6,
     author = {J. M. Zapata},
     title = {A boolean valued analysis approach to conditional risk},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {71--89},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2019_21_4_a6/}
}
TY  - JOUR
AU  - J. M. Zapata
TI  - A boolean valued analysis approach to conditional risk
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2019
SP  - 71
EP  - 89
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2019_21_4_a6/
LA  - en
ID  - VMJ_2019_21_4_a6
ER  - 
%0 Journal Article
%A J. M. Zapata
%T A boolean valued analysis approach to conditional risk
%J Vladikavkazskij matematičeskij žurnal
%D 2019
%P 71-89
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2019_21_4_a6/
%G en
%F VMJ_2019_21_4_a6
J. M. Zapata. A boolean valued analysis approach to conditional risk. Vladikavkazskij matematičeskij žurnal, Tome 21 (2019) no. 4, pp. 71-89. http://geodesic.mathdoc.fr/item/VMJ_2019_21_4_a6/