The Gordon theorem: origins and meaning
Vladikavkazskij matematičeskij žurnal, Tome 21 (2019) no. 4, pp. 63-70 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Boolean valued analysis, the term coined by Takeuti, signifies a branch of functional analysis which uses a special technique of Boolean valued models of set theory. The fundamental result of Boolean valued analysis is Gordon’s Theorem stating that each internal field of reals of a Boolean valued model descends into a universally complete vector lattice. Thus, a remarkable opportunity opens up to expand and enrich the mathematical knowledge by translating information about the reals to the language of other branches of functional analysis. This is a brief overview of the mathematical events around the Gordon Theorem. The relationship between the Kantorovich's heuristic principle and Boolean valued transfer principle is also discussed.
@article{VMJ_2019_21_4_a5,
     author = {A. G. Kusraev and S. S. Kutateladze},
     title = {The {Gordon} theorem: origins and meaning},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {63--70},
     year = {2019},
     volume = {21},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2019_21_4_a5/}
}
TY  - JOUR
AU  - A. G. Kusraev
AU  - S. S. Kutateladze
TI  - The Gordon theorem: origins and meaning
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2019
SP  - 63
EP  - 70
VL  - 21
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMJ_2019_21_4_a5/
LA  - en
ID  - VMJ_2019_21_4_a5
ER  - 
%0 Journal Article
%A A. G. Kusraev
%A S. S. Kutateladze
%T The Gordon theorem: origins and meaning
%J Vladikavkazskij matematičeskij žurnal
%D 2019
%P 63-70
%V 21
%N 4
%U http://geodesic.mathdoc.fr/item/VMJ_2019_21_4_a5/
%G en
%F VMJ_2019_21_4_a5
A. G. Kusraev; S. S. Kutateladze. The Gordon theorem: origins and meaning. Vladikavkazskij matematičeskij žurnal, Tome 21 (2019) no. 4, pp. 63-70. http://geodesic.mathdoc.fr/item/VMJ_2019_21_4_a5/

[1] Gordon E. I., “Real Numbers in Boolean-Valued Models of Set Theory and $K$-spaces”, Dokl. Akad. Nauk SSSR, 237:4 (1977), 773–775 (in Russian) | MR | Zbl

[2] Aliprantis C. D., Burkinshaw O., Positive Operators, Academic Press, New York, 1985 | MR | Zbl

[3] Vulikh B. Z., Introduction to the Theory of Partially Ordered Spaces, Wolters–Noordhoff Publications LTD, Groningen, 1967 | MR | Zbl

[4] Kantorovich L. V., Vulikh B. Z., Pinsker A. G., Functional Analysis in Semiordered Spaces, Gostekhizdat, M.–L., 1950, 548 pp. (in Russian) | MR

[5] Bell J. L., Boolean-Valued Models and Independence Proofs in Set Theory, Clarendon Press, New York etc., 1985, xx+165 pp. | MR | Zbl

[6] Takeuti G., “Boolean Valued Analysis”, Applications of Sheaves, Proc. Res. Sympos. Appl. Sheaf Theory to Logic, Algebra and Anal. (Univ. Durham, Durham, 1977), Lecture Notes in Mathematics, 753, Springer-Verlag, Berlin etc., 1979, 714–731 | DOI | MR

[7] Kusraev A. G., Kutateladze S. S., Boolean Valued Analysis, Kluwer, Dordrecht, 1999 | MR | Zbl

[8] Kusraev A. G., Kutateladze S. S., Introduction to Boolean Valued Analysis, Nauka, M., 2005, 526 pp. (in Russian) | MR | Zbl

[9] Kusraev A. G., Kutateladze S. S., Boolean Valued Analysis: Selected Topics, Trends in Science: The South of Russia. A Mathematical Monograph, 6, SMI VSC RAS, Vladikavkaz, 2014

[10] Scott D., “Boolean Models and Nonstandard Analysis”, Applications of Model Theory to Algebra, Analysis, and Probability, ed. W. A. J. Luxemburg, Holt, Rinehart and Winston, New York etc., 1969, 87–92 | MR

[11] Jech T. J., Lectures in Set Theory with Particular Emphasis on the Method of Forcing, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1971 | DOI | MR | Zbl

[12] Takeuti G., Zaring W. M., Axiomatic Set Theory, Springer-Verlag, New York, 1973, 238 pp. | MR | Zbl

[13] Luxemburg W. A. J., Zaanen A. C., Riesz Spaces, v. 1, North Holland, Amsterdam–London, 1971 | MR | Zbl

[14] Meyer-Nieberg P., Banach Lattices, Springer-Verlag, Berlin etc., 1991, xvi+395 pp. | MR | Zbl

[15] Kantorovich L. V., “On Semiordered Linear Spaces and their Applications to the Theory of Linear Operations”, Dokl. Akad. Nauk SSSR, 4:1–2 (1935), 11–14

[16] Kutateladze S. S., “Mathematics and Economics in the Legacy of Leonid Kantorovich”, Vladikavkaz Math. J., 14:1 (2012), 7–21 | DOI | MR | Zbl

[17] Gordon E. I., Stability of Horn Formulas with Respect to Transition Algebras of Boolean Measures on Locally Compact Fields, Lenin Moscow State Pedagogical Institute, VINITI, M., 1980 (in Russian)

[18] Gordon E. I., “To the Theorems of Identity Preservation in $K$-Spaces”, Sibirskii Matematicheskii Zhurnal, 23:5 (1982), 55–65 | MR | Zbl

[19] Gordon E. I., Elements of Boolean Valued Analysis, Gor'kii State University, Gor'kii, 1991 (in Russian)

[20] Jech T. J., “Abstract Theory of Abelian Operator Algebras: an Application of Forcing”, Trans. Amer. Math. Soc., 289:1 (1985), 133–162 | DOI | MR | Zbl

[21] Jech T. J., “First Order Theory of Complete Stonean Algebras (Boolean-valued Real and Complex Numbers)”, Canad. Math. Bull., 30:4 (1987), 385–392 | DOI | MR | Zbl

[22] Kusraev A. G., Dominated Operators, Kluwer, Dordrecht, 2000, 446 pp. | MR | Zbl

[23] Gutman A. E., “Locally One-Dimensional $K$-Spaces and $\sigma$-Distributive Boolean Algebras”, Siberian Adv. Math., 5:1 (1995), 42–48 | MR | Zbl

[24] Fremlin D. H., Measure Theory, v. 2, Broad Foundations, Cambridge University Press, Cambridge, 2001 | MR

[25] Scott D., “A Proof of the Independence of the Continuum Hypothesis”, Mathematical Systems Theory, 1:2, 89–111 | DOI | MR

[26] Takeuti G., Two Applications of Logic to Mathematics, Princeton Univ. Press, Princeton, 1978, viii+137 pp. | MR | Zbl

[27] Vopěnka P., “General Theory of $\nabla$-Models”, Comment. Math. Univ. Carolin., 8:1 (1967), 147–170 | MR

[28] Solovay R., Tennenbaum S., “Iterated Cohen Extensions and Souslin's Problem”, Ann. Math., 94:2 (1971), 201–245 | DOI | MR | Zbl

[29] Solovay R., “A Model of set Theory in Which Every Set of Reals is Lebesgue Measurable”, Ann. Math., 92:1 (1970), 1–56 | DOI | MR | Zbl

[30] Wright J. D. M., “All Operators on a Hilbert Space are Bounded”, Bull. Amer. Math. Soc., 79:6 (1973), 1247–1250 | DOI | MR

[31] Gordon E. I., On the Extension of Haar Measure in $\sigma$-Compact Groups, No 1243-81, Lenin Moscow State Pedagogical Institute, VINITI, M., 1980 (in Russian)

[32] Vladimirov D. A., Boolean Algebras, Nauka, M., 1969 (in Russian) | MR

[33] Shelah S., Can you Take Solovay's Inaccessible Away?, Israel Journal of Mathematics, 48:1 (1984), 1–47 | DOI | MR | Zbl

[34] Sacks G., “Measure-Theoretic Uniformity in Recursion Theory and Set Theory”, Trans. Amer. Math. Soc., 142 (1969), 381–420 | DOI | MR | Zbl

[35] Tennenbaum S., “Souslin's Problem”, Proceedings of the National Academy of Sciences, 59:1 (1968), 60–63 | DOI | MR | Zbl

[36] Jech T. J., “Non-Provability of Souslins Hypothesis”, Comment. Math. Univ. Caroline, 8:1 (1967), 291–305 | MR | Zbl

[37] Dales H., Woodin W., An Introduction to Independence for Analysts, London Math. Soc. Lect. Note Ser., 115, Cambridge Univ. Press, Cambridge, 1987 | DOI | MR | Zbl