The Gordon theorem: origins and meaning
Vladikavkazskij matematičeskij žurnal, Tome 21 (2019) no. 4, pp. 63-70
Voir la notice de l'article provenant de la source Math-Net.Ru
Boolean valued analysis, the term coined by Takeuti, signifies a branch of functional analysis which uses a special technique of Boolean valued models of set theory. The fundamental result of Boolean valued analysis is Gordon’s Theorem stating that each internal field of reals of a Boolean valued model descends into a universally complete vector lattice. Thus, a remarkable opportunity opens up to expand and enrich the mathematical knowledge by translating information about the reals to the language of other branches of functional analysis. This is a brief overview of the mathematical events around the Gordon Theorem. The relationship between the Kantorovich's heuristic principle and Boolean valued transfer principle is also discussed.
@article{VMJ_2019_21_4_a5,
author = {A. G. Kusraev and S. S. Kutateladze},
title = {The {Gordon} theorem: origins and meaning},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {63--70},
publisher = {mathdoc},
volume = {21},
number = {4},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2019_21_4_a5/}
}
A. G. Kusraev; S. S. Kutateladze. The Gordon theorem: origins and meaning. Vladikavkazskij matematičeskij žurnal, Tome 21 (2019) no. 4, pp. 63-70. http://geodesic.mathdoc.fr/item/VMJ_2019_21_4_a5/