The Gordon theorem: origins and meaning
Vladikavkazskij matematičeskij žurnal, Tome 21 (2019) no. 4, pp. 63-70

Voir la notice de l'article provenant de la source Math-Net.Ru

Boolean valued analysis, the term coined by Takeuti, signifies a branch of functional analysis which uses a special technique of Boolean valued models of set theory. The fundamental result of Boolean valued analysis is Gordon’s Theorem stating that each internal field of reals of a Boolean valued model descends into a universally complete vector lattice. Thus, a remarkable opportunity opens up to expand and enrich the mathematical knowledge by translating information about the reals to the language of other branches of functional analysis. This is a brief overview of the mathematical events around the Gordon Theorem. The relationship between the Kantorovich's heuristic principle and Boolean valued transfer principle is also discussed.
@article{VMJ_2019_21_4_a5,
     author = {A. G. Kusraev and S. S. Kutateladze},
     title = {The {Gordon} theorem: origins and meaning},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {63--70},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2019_21_4_a5/}
}
TY  - JOUR
AU  - A. G. Kusraev
AU  - S. S. Kutateladze
TI  - The Gordon theorem: origins and meaning
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2019
SP  - 63
EP  - 70
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2019_21_4_a5/
LA  - en
ID  - VMJ_2019_21_4_a5
ER  - 
%0 Journal Article
%A A. G. Kusraev
%A S. S. Kutateladze
%T The Gordon theorem: origins and meaning
%J Vladikavkazskij matematičeskij žurnal
%D 2019
%P 63-70
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2019_21_4_a5/
%G en
%F VMJ_2019_21_4_a5
A. G. Kusraev; S. S. Kutateladze. The Gordon theorem: origins and meaning. Vladikavkazskij matematičeskij žurnal, Tome 21 (2019) no. 4, pp. 63-70. http://geodesic.mathdoc.fr/item/VMJ_2019_21_4_a5/