$2$-Local isometries of non-commutative Lorentz spaces
Vladikavkazskij matematičeskij žurnal, Tome 21 (2019) no. 4, pp. 5-10
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\mathcal M $ be a von Neumann algebra equipped with a faithful normal finite trace $\tau$, and let $S\left( \mathcal{M}, \tau\right)$ be an $\ast $-algebra of all $\tau $-measurable operators affiliated with $\mathcal M $. For $x \in S\left( \mathcal{M}, \tau\right)$ the generalized singular value function $\mu(x):t\rightarrow \mu(t;x)$, $t>0$, is defined by the equality $\mu(t;x)=\inf\{\|xp\|_{\mathcal{M}}:\, p^2=p^*=p \in \mathcal{M}, \, \tau(\mathbf{1}-p)\leq t\}.$ Let $\psi$ be an increasing concave continuous function on $[0, \infty)$ with $\psi(0) = 0$, $\psi(\infty)=\infty$, and let $\Lambda_\psi(\mathcal M,\tau) = \left \{x \in S\left( \mathcal{M}, \tau\right): \ \| x \|_{\psi} =\int_0^{\infty}\mu(t;x)d\psi(t) < \infty \right \}$ be the non-commutative Lorentz space. A surjective (not necessarily linear) mapping $V:\, \Lambda_\psi(\mathcal M,\tau) \to \Lambda_\psi(\mathcal M,\tau)$ is called a surjective $2$-local isometry, if for any $x, y \in \Lambda_\psi(\mathcal M,\tau) $ there exists a surjective linear isometry $V_{x, y}:\, \Lambda_\psi(\mathcal M,\tau) \to \Lambda_\psi(\mathcal M,\tau)$ such that $V(x) = V_{x, y}(x)$ and $V(y) = V_{x, y}(y)$. It is proved that in the case when $\mathcal{M}$ is a factor, every surjective $2$-local isometry $V:\Lambda_\psi(\mathcal M,\tau) \to \Lambda_\psi(\mathcal M,\tau)$ is a linear isometry.
@article{VMJ_2019_21_4_a0,
     author = {A. A. Alimov and V. I. Chilin},
     title = {$2${-Local} isometries of non-commutative {Lorentz} spaces},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {5--10},
     year = {2019},
     volume = {21},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2019_21_4_a0/}
}
TY  - JOUR
AU  - A. A. Alimov
AU  - V. I. Chilin
TI  - $2$-Local isometries of non-commutative Lorentz spaces
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2019
SP  - 5
EP  - 10
VL  - 21
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMJ_2019_21_4_a0/
LA  - en
ID  - VMJ_2019_21_4_a0
ER  - 
%0 Journal Article
%A A. A. Alimov
%A V. I. Chilin
%T $2$-Local isometries of non-commutative Lorentz spaces
%J Vladikavkazskij matematičeskij žurnal
%D 2019
%P 5-10
%V 21
%N 4
%U http://geodesic.mathdoc.fr/item/VMJ_2019_21_4_a0/
%G en
%F VMJ_2019_21_4_a0
A. A. Alimov; V. I. Chilin. $2$-Local isometries of non-commutative Lorentz spaces. Vladikavkazskij matematičeskij žurnal, Tome 21 (2019) no. 4, pp. 5-10. http://geodesic.mathdoc.fr/item/VMJ_2019_21_4_a0/

[1] Aminov B. R., Chilin V. I., “Isometries of Perfect Norm Ideals of Compact Operators”, Studia Mathematica, 241:1 (2018), 87–99 | DOI | MR | Zbl

[2] Molnar L., “2-Local Isometries of some Operator Algebras”, Proceedings of the Edinburgh Mathematical Society, 45 (2002), 349–352 | DOI | MR | Zbl

[3] Sourour A., “Isometries of Norm Ideals of Compact Operators”, Journal of Functional Analysis, 43:1 (1981), 69–77 | DOI | MR | Zbl

[4] Lord S., Sukochev F., Zanin D., Singular Traces. Theory and Applications, Walter de Gruyter GmbH, Berlin/Boston, 2013 | MR

[5] Chilin V. I., Medzhitov A. M., Sukochev F. A., “Isometries of Non-Commutative Lorentz Spaces”, Mathematische Zeitschrift, 200:4 (1989), 527–545 | DOI | MR | Zbl

[6] Takesaki M., Theory of Operator Algebras I, Springer-Verlag, New York, 1979 | MR | Zbl

[7] Fack T., Kosaki H., “Generalized $s$-Numbers of $\tau$-Measurable Operators”, Pacific Journal of Mathematics, 123:2 (1986), 269–300 | DOI | MR | Zbl

[8] Chilin V. I., Sukochev F. A., “Weak Convergence in Non-Commutative Symmetric Spaces”, Journal of Operator Theory, 31:1 (1994), 35–55 | MR

[9] Ciach L. J., “On the Conjugates of Some Operator Spaces, I”, Demonstratio Mathematica, 18:2 (1985), 537–554 | DOI | MR | Zbl

[10] Bratteli O., Robinson D. W., Operator Algebras and Quantum Statistical Mechaniks, Springer-Verlag, N. Y.–Heidelber–Berlin, 1979 | MR

[11] Sarymsakov T. A., Ayupov Sh. A., Khadzhiev D., Chilin V. I., Ordered Algebras, FAN, Tashkent, 1983 (in Russian) | MR | Zbl

[12] Fleming R. J., Jamison J. E., Isometries on Banach Spaces: Function Spaces, Chapman-Hall/CRC, Florida, Boca Raton, 2003 | MR | Zbl

[13] Krein M. G., Petunin Ju. I., Semenov E. M., Interpolation of Linear Operators, Translations of Mathematical Monographs, 54, American Mathematical Society, 1982 | MR

[14] Dodds P., Dodds Th. K.-Y., Pagter B., “Noncommutative Kothe Duality”, Transactions of the American Mathematical Society, 339:2 (1993), 717–750 | DOI | MR | Zbl