On transformations of Bessel functions
Vladikavkazskij matematičeskij žurnal, Tome 21 (2019) no. 3, pp. 5-13

Voir la notice de l'article provenant de la source Math-Net.Ru

Elementary Darboux transformations of Bessel functions are discussed. In Theorem 1 we present an improved version of a general factorization approach which goes back to E. Schrödinger, in terms of the two interrelated linear differential substitutions $B_1$ and $B_2$. The main Theorem 2 deals with the Bessel–Riccati equations. The elementary Darboux transformations are reduced to fraction-rational ones. It is shown that a fixed point of the latter generates the rational in $x$ solutions of Bessel–Riccati equations introduced by Theorem 2. It should be noted that Bessel functions are considered as eigenfunctions $A\psi=\lambda\psi$ of the Euler operators $A=e^{2t}\left(D_t^2+a_1D_t+a_2\right)$ with constant coefficients $a_1$ and $a_2$. This enables one (Lemma 3) to build up asymptotic solutions of the Bessel–Riccati equations in the form of series in inverse powers of the parameter $z=kx$, $k^2=\lambda$, $x=e^{-t}$. It is also shown that these formal series in inverse powers of the spectral parameter $k=\sqrt \lambda$ are convergent if the rational solutions of the corresponding Bessel–Riccati equation from Theorem 2 are exist.
@article{VMJ_2019_21_3_a0,
     author = {A. A. Allahverdyan},
     title = {On transformations of {Bessel} functions},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {5--13},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2019_21_3_a0/}
}
TY  - JOUR
AU  - A. A. Allahverdyan
TI  - On transformations of Bessel functions
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2019
SP  - 5
EP  - 13
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2019_21_3_a0/
LA  - ru
ID  - VMJ_2019_21_3_a0
ER  - 
%0 Journal Article
%A A. A. Allahverdyan
%T On transformations of Bessel functions
%J Vladikavkazskij matematičeskij žurnal
%D 2019
%P 5-13
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2019_21_3_a0/
%G ru
%F VMJ_2019_21_3_a0
A. A. Allahverdyan. On transformations of Bessel functions. Vladikavkazskij matematičeskij žurnal, Tome 21 (2019) no. 3, pp. 5-13. http://geodesic.mathdoc.fr/item/VMJ_2019_21_3_a0/