On infinite Frobenius groups
Vladikavkazskij matematičeskij žurnal, Tome 20 (2018) no. 2, pp. 80-85
Cet article a éte moissonné depuis la source Math-Net.Ru
We study the structure of a periodic group $G$ satisfying the following conditions: $(F_1)$ The group $G$ is a semidirect product of a subgroup $F$ by a subgroup $H$; $(F_2)$ $H$ acts freely on $F$ with respect to conjugation in $G$, i. e. for $f\in F$, $h\in H$ the equality $f^h=f$ holds only for the cases $f=1$ or $h=1$. In other words $H$ acts on $F$ as the group of regular automorphisms. $(F_3)$ The order of every element $g\in G$ of the form $g=fh$ with $f\in F$ and $1\neq h\in H$ is equal to the order of $h$; in other words, every non-trivial element of $H$ induces with respect to conjugation in $G$ a splitting automorphism of the subgroup $F$. $(F_4)$ The subgroup $H$ is generated by elements of order $3$. In particular, we show that the rank of every principal factor of the group $G$ within $F$ is at most four. If $G$ is a finite Frobenius group, then the conditions $(F_1)$ and $(F_2)$ imply $(F_3)$. For infinite groups with $(F_1)$ and $(F_2)$ the condition $(F_3)$ may be false, and we say that a group is Frobenius if all three conditions $(F_1)$–$(F_3)$ are satisfied. The main result of the paper gives a description of а periodic Frobenius groups with the property $(F_4)$.
@article{VMJ_2018_20_2_a9,
author = {D. V. Lytkina and V. D. Mazurov and A. Kh. Zhurtov},
title = {On infinite {Frobenius} groups},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {80--85},
year = {2018},
volume = {20},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2018_20_2_a9/}
}
D. V. Lytkina; V. D. Mazurov; A. Kh. Zhurtov. On infinite Frobenius groups. Vladikavkazskij matematičeskij žurnal, Tome 20 (2018) no. 2, pp. 80-85. http://geodesic.mathdoc.fr/item/VMJ_2018_20_2_a9/
[1] Mazurov V. D., “A generalization of a theorem of Zassenhaus”, Vladikavkaz Math. J., 10:1 (2008), 40–52 (in Russian) | MR | Zbl
[2] Zhurtov A. Kh., “On regular automorphisms of order 3 and frobenius pairs”, Siberian Math. J., 41:2 (2000), 268–275 | DOI | MR | Zbl
[3] GAP: Groups, algorithms, and programming, http://www.gap-system.org
[4] Isaacs I. M., Character theory of finite groups, American Math. Soc. Chelsea Publ., Providence (R. I.), 2006, 304 pp. | MR