Derivations on Banach $*$-ideals in von Neumann algebras
Vladikavkazskij matematičeskij žurnal, Tome 20 (2018) no. 2, pp. 23-28

Voir la notice de l'article provenant de la source Math-Net.Ru

It is known that any derivation $\delta: \mathcal M \to \mathcal M$ on the von Neumann algebra $\mathcal M$ is an inner, i. e. $\delta(x) := \delta_a(x) =[a, x] =ax -xa$, $x \in \mathcal M$, for some $a \in \mathcal M$. If $H$ is a separable infinite-dimensional complex Hilbert space and $\mathcal K(H)$ is a $C^*$-subalgebra of compact operators in $C^*$-algebra $\mathcal B(H)$ of all bounded linear operators acting in $H$, then any derivation $\delta: \mathcal K(H) \to \mathcal K(H)$ is a spatial derivation, i.e. there exists an operator $ a \in \mathcal B(H)$ such that $\delta(x) = [x, a]$ for all $x \in K(H)$. In addition, it has recently been established by Ber A. F., Chilin V. I., Levitina G. B. and Sukochev F. A. (JMAA, 2013) that any derivation $\delta: \mathcal{E}\to \mathcal{E}$ on Banach symmetric ideal of compact operators $\mathcal{E} \subseteq \mathcal K(H)$ is a spatial derivation. We show that the same result is also true for an arbitrary Banach $*$-ideal in every von Neumann algebra $\mathcal{M}$. More precisely: If $\mathcal{M}$ is an arbitrary von Neumann algebra, $\mathcal{E}$ be a Banach $*$-ideal in $\mathcal{M}$ and $\delta\colon \mathcal{E}\to \mathcal{E}$ is a derivation on $\mathcal{E}$, then there exists an element $ a \in \mathcal{M}$ such that $\delta(x) = [x, a]$ for all $x \in \mathcal{E}$, i. e. $\delta $ is a spatial derivation.
@article{VMJ_2018_20_2_a2,
     author = {A. F. Ber and V. I. Chilin and F. A. Sukochev},
     title = {Derivations on  {Banach} $*$-ideals in von {Neumann} algebras},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {23--28},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2018_20_2_a2/}
}
TY  - JOUR
AU  - A. F. Ber
AU  - V. I. Chilin
AU  - F. A. Sukochev
TI  - Derivations on  Banach $*$-ideals in von Neumann algebras
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2018
SP  - 23
EP  - 28
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2018_20_2_a2/
LA  - en
ID  - VMJ_2018_20_2_a2
ER  - 
%0 Journal Article
%A A. F. Ber
%A V. I. Chilin
%A F. A. Sukochev
%T Derivations on  Banach $*$-ideals in von Neumann algebras
%J Vladikavkazskij matematičeskij žurnal
%D 2018
%P 23-28
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2018_20_2_a2/
%G en
%F VMJ_2018_20_2_a2
A. F. Ber; V. I. Chilin; F. A. Sukochev. Derivations on  Banach $*$-ideals in von Neumann algebras. Vladikavkazskij matematičeskij žurnal, Tome 20 (2018) no. 2, pp. 23-28. http://geodesic.mathdoc.fr/item/VMJ_2018_20_2_a2/