Derivations on Banach $*$-ideals in von Neumann algebras
Vladikavkazskij matematičeskij žurnal, Tome 20 (2018) no. 2, pp. 23-28
Voir la notice de l'article provenant de la source Math-Net.Ru
It is known that any derivation $\delta: \mathcal M \to \mathcal M$ on the von Neumann algebra $\mathcal M$ is an inner, i. e. $\delta(x) := \delta_a(x) =[a, x] =ax -xa$, $x \in \mathcal M$, for some $a \in \mathcal M$. If $H$ is a separable infinite-dimensional complex Hilbert space and $\mathcal K(H)$ is a $C^*$-subalgebra of compact operators in $C^*$-algebra $\mathcal B(H)$ of all bounded linear operators acting in $H$, then any derivation $\delta: \mathcal K(H) \to \mathcal K(H)$ is a spatial derivation, i.e. there exists an operator $ a \in \mathcal B(H)$ such that $\delta(x) = [x, a]$ for all $x \in K(H)$. In addition, it has recently been established by Ber A. F., Chilin V. I., Levitina G. B. and Sukochev F. A. (JMAA, 2013) that any derivation $\delta: \mathcal{E}\to \mathcal{E}$ on Banach symmetric ideal of compact operators $\mathcal{E} \subseteq \mathcal K(H)$ is a spatial derivation. We show that the same result is also true for an arbitrary Banach $*$-ideal in every von Neumann algebra $\mathcal{M}$. More precisely: If $\mathcal{M}$ is an arbitrary von Neumann algebra, $\mathcal{E}$ be a Banach $*$-ideal in $\mathcal{M}$ and $\delta\colon \mathcal{E}\to \mathcal{E}$ is a derivation on $\mathcal{E}$, then there exists an element $ a \in \mathcal{M}$ such that $\delta(x) = [x, a]$ for all $x \in \mathcal{E}$, i. e. $\delta $ is a spatial derivation.
@article{VMJ_2018_20_2_a2,
author = {A. F. Ber and V. I. Chilin and F. A. Sukochev},
title = {Derivations on {Banach} $*$-ideals in von {Neumann} algebras},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {23--28},
publisher = {mathdoc},
volume = {20},
number = {2},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2018_20_2_a2/}
}
TY - JOUR AU - A. F. Ber AU - V. I. Chilin AU - F. A. Sukochev TI - Derivations on Banach $*$-ideals in von Neumann algebras JO - Vladikavkazskij matematičeskij žurnal PY - 2018 SP - 23 EP - 28 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMJ_2018_20_2_a2/ LA - en ID - VMJ_2018_20_2_a2 ER -
A. F. Ber; V. I. Chilin; F. A. Sukochev. Derivations on Banach $*$-ideals in von Neumann algebras. Vladikavkazskij matematičeskij žurnal, Tome 20 (2018) no. 2, pp. 23-28. http://geodesic.mathdoc.fr/item/VMJ_2018_20_2_a2/