Characterizations of finite dimensional Archimedean vector lattices
Vladikavkazskij matematičeskij žurnal, Tome 20 (2018) no. 2, pp. 86-94
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we give some necessary and sufficient conditions for an Archimedean vector lattice $A$ to be of finite dimension. In this context, we give three characterizations. The first one contains the relation between the vector lattice $A$ to be of finite dimension and its universal completion $A^u$. The second one shows that the vector lattice $A$ is of finite dimension if and only if one of the following two equivalent conditions holds : (a) every maximal modular algebra ideal in $A^u$ is relatively uniformly complete or (b) $\mathrm{Orth}\,(A,A^u)=Z(A,A^u)$ where $\mathrm{Orth}\,(A,A^u)$ and $Z(A,A^u)$ denote the vector lattice of all orthomorphisms from $A$ to $A^u$ and the sublattice consisting of orthomorphisms $\pi$ with $|\pi(x)|\leq\lambda|x|$ $(x\in A)$ for some $0\leq\lambda\in\mathbb{R}$, respectively. It is well-known that any universally complete vector lattice $A$ is of the form $C^\infty (X)$ for some Hausdorff extremally disconnected compact topological space $X$. The point $x\in X$ is called $\sigma$-isolated if the intersection of every sequence of neighborhoods of $x$ is a neighborhood of $x$. The last characterization of finite dimensional Archimedean vector lattices is the following. Let $A$ be a vector lattice and let $A^{u}(=C^{\infty}\left(X\right))$ be its universal completion. Then $A$ is of finite dimension if and only if each element of $X$ is $\sigma$-isolated. Bresar in [3] raised a question to find new examples of zero product determined algebras. Finally, as an application, we give a positive answer to this question.
@article{VMJ_2018_20_2_a10,
     author = {F. Polat and M. A. Toumi},
     title = {Characterizations of finite dimensional {Archimedean} vector lattices},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {86--94},
     year = {2018},
     volume = {20},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2018_20_2_a10/}
}
TY  - JOUR
AU  - F. Polat
AU  - M. A. Toumi
TI  - Characterizations of finite dimensional Archimedean vector lattices
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2018
SP  - 86
EP  - 94
VL  - 20
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMJ_2018_20_2_a10/
LA  - en
ID  - VMJ_2018_20_2_a10
ER  - 
%0 Journal Article
%A F. Polat
%A M. A. Toumi
%T Characterizations of finite dimensional Archimedean vector lattices
%J Vladikavkazskij matematičeskij žurnal
%D 2018
%P 86-94
%V 20
%N 2
%U http://geodesic.mathdoc.fr/item/VMJ_2018_20_2_a10/
%G en
%F VMJ_2018_20_2_a10
F. Polat; M. A. Toumi. Characterizations of finite dimensional Archimedean vector lattices. Vladikavkazskij matematičeskij žurnal, Tome 20 (2018) no. 2, pp. 86-94. http://geodesic.mathdoc.fr/item/VMJ_2018_20_2_a10/

[1] Aliprantis C. D., Burkinshaw O., Positive Operators, Acad. Press, London, 1985 | MR | Zbl

[2] Bernau S. J., Huijsmans C. B., “Almost $f$-algberas and $d$-algebras”, Math. Proc. Cambridge Philos. Soc., 107:2 (1990), 287–308 | DOI | MR | Zbl

[3] Brešar M., “Finite dimensional zero product determined algebras are generated by idempotents”, Expo Math., 34:1 (2016), 130–143 | DOI | MR | Zbl

[4] Buskes G., van Rooij A., “Almost $f$-algebras. Commutativity and the Cauchy–Schwarz inequality”, Positivity, 4 (2000), 227–331 | DOI | MR

[5] Ercan Z., Önal S., “Some Observations on Riesz Algebras”, Positivity, 10 (2006), 731–736 | DOI | MR | Zbl

[6] Huijsmans C. B., “Some analogies between commutative rings, Riesz spaces and distributive lattices with smallest element”, Nederl. Akad. Wet., Proc., Ser. A77, 36 (1974), 132–147 | DOI | MR

[7] Huijsmans C. B., “Lattice-ordered division algebras”, Proc. R. Ir. Acad., 92A:2 (1992), 239–241 | MR | Zbl

[8] Nouki N., Toumi M. A., “Derivations on universally complete $f$-algebras”, Indag. Math., 26:1 (2015), 1–18 | DOI | MR

[9] Luxemburg W. A. J., Moore L. C., “Archimedean quotient Riesz spaces”, Duke. Math. J., 34 (1967), 725–739 | DOI | MR | Zbl

[10] Luxemburg W. A. J., Zaanen A. C., Vector Lattices, v. I, North-Holland, Amsterdam, 1971 | MR

[11] Marinacci M., Montrucchio L., “On concavity and supermodularity”, J. Math. Anal. Appl., 344 (2008), 642–654 | DOI | MR | Zbl

[12] De Pagter B., $f$-algebras and orthomorphisms, Ph.D. Thesis, Leiden Univ., Leiden, 1981 | DOI

[13] Rickart C. E., General Theory of Algebras, Van Nostrand, Princeton, 1960 | MR | Zbl

[14] Toumi M. A., “Characterization of hyper-Archimedean vector lattices via disjointness preserving bilinear maps”, Algebra Univers, 67:1 (2012), 29–42 | DOI | MR | Zbl

[15] Toumi M. A., “When orthomorphisms are in the ideal center”, Positivity, 18:3 (2014), 579–583 | DOI | MR | Zbl

[16] Toumi M. A., “A relationship between the space of orthomorphisms and the centre of a vector lattice revisited”, Positivity, 20:2 (2016), 337–342 | DOI | MR | Zbl

[17] Uyar A., “On Banach lattice algebras”, Turkish J. Math., 29:3 (2005), 287–290 | DOI | MR | Zbl