Characterizations of finite dimensional Archimedean vector lattices
Vladikavkazskij matematičeskij žurnal, Tome 20 (2018) no. 2, pp. 86-94

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we give some necessary and sufficient conditions for an Archimedean vector lattice $A$ to be of finite dimension. In this context, we give three characterizations. The first one contains the relation between the vector lattice $A$ to be of finite dimension and its universal completion $A^u$. The second one shows that the vector lattice $A$ is of finite dimension if and only if one of the following two equivalent conditions holds : (a) every maximal modular algebra ideal in $A^u$ is relatively uniformly complete or (b) $\mathrm{Orth}\,(A,A^u)=Z(A,A^u)$ where $\mathrm{Orth}\,(A,A^u)$ and $Z(A,A^u)$ denote the vector lattice of all orthomorphisms from $A$ to $A^u$ and the sublattice consisting of orthomorphisms $\pi$ with $|\pi(x)|\leq\lambda|x|$ $(x\in A)$ for some $0\leq\lambda\in\mathbb{R}$, respectively. It is well-known that any universally complete vector lattice $A$ is of the form $C^\infty (X)$ for some Hausdorff extremally disconnected compact topological space $X$. The point $x\in X$ is called $\sigma$-isolated if the intersection of every sequence of neighborhoods of $x$ is a neighborhood of $x$. The last characterization of finite dimensional Archimedean vector lattices is the following. Let $A$ be a vector lattice and let $A^{u}(=C^{\infty}\left(X\right))$ be its universal completion. Then $A$ is of finite dimension if and only if each element of $X$ is $\sigma$-isolated. Bresar in [3] raised a question to find new examples of zero product determined algebras. Finally, as an application, we give a positive answer to this question.
@article{VMJ_2018_20_2_a10,
     author = {F. Polat and M. A. Toumi},
     title = {Characterizations of finite dimensional {Archimedean} vector lattices},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {86--94},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2018_20_2_a10/}
}
TY  - JOUR
AU  - F. Polat
AU  - M. A. Toumi
TI  - Characterizations of finite dimensional Archimedean vector lattices
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2018
SP  - 86
EP  - 94
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2018_20_2_a10/
LA  - en
ID  - VMJ_2018_20_2_a10
ER  - 
%0 Journal Article
%A F. Polat
%A M. A. Toumi
%T Characterizations of finite dimensional Archimedean vector lattices
%J Vladikavkazskij matematičeskij žurnal
%D 2018
%P 86-94
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2018_20_2_a10/
%G en
%F VMJ_2018_20_2_a10
F. Polat; M. A. Toumi. Characterizations of finite dimensional Archimedean vector lattices. Vladikavkazskij matematičeskij žurnal, Tome 20 (2018) no. 2, pp. 86-94. http://geodesic.mathdoc.fr/item/VMJ_2018_20_2_a10/