@article{VMJ_2018_20_1_a3,
author = {B. R. Aminov and V. I. Chilin},
title = {The uniqueness of the symmetric structure in ideals of compact operators},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {30--37},
year = {2018},
volume = {20},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2018_20_1_a3/}
}
B. R. Aminov; V. I. Chilin. The uniqueness of the symmetric structure in ideals of compact operators. Vladikavkazskij matematičeskij žurnal, Tome 20 (2018) no. 1, pp. 30-37. http://geodesic.mathdoc.fr/item/VMJ_2018_20_1_a3/
[1] Abramovich Yu. A., “Isometries of norm latties”, Convex Anal. and Related Problems, 43(60) (1988), 74–80 (in Russian) | MR | Zbl
[2] Aminov B. R., Chilin V. I., “Isometries of perfect norm ideals of compact operators”, Studia Math., 241:1 (2018), 87–99 | DOI | MR | Zbl
[3] Arazy J., Lindenstrauss J., “Some linear topological properties of the spaces $C_p$ of operators on Hilbert space”, Composite Math., 30 (1975), 81–111 | DOI | MR | Zbl
[4] Arazy J., “Basic sequences, embeddings, and the uniqueness of the symmetric structure in unitary matrix spaces”, J. Func. Anal., 40 (1981), 302–340 | DOI | MR | Zbl
[5] Bennet C., Sharpley R., Interpolation of Operators, Acad. Press, INC, 1988, 483 pp. | MR | Zbl
[6] Bratteli O., Robinson D. W., Operator Algebras and Quantum Statistical Mechaniks, Springer-Verlag, N. Y.–Heidelber–Berlin, 1979 | MR
[7] Carothers N., Dilworth S., “Subspaces of $L_{p,q}$”, Proc. Amer. Math. Soc., 104:2 (1988), 537–545 | MR | Zbl
[8] Chilin V. I., Medzhitov A. M., Sukochev F. A., “Isometries of non-commutative Lorentz spaces”, Math. Z., 200 (1989), 527–545 | DOI | MR | Zbl
[9] Chilin V., Krygin A., Sukochev F., “Extreme points of convex fully symmetric sets of measurable operators”, Integr. Equat. Oper. Theory, 15 (1992), 186–226 | DOI | MR | Zbl
[10] Chilin V. I., Sadovskaya O. V., “Isomorphic classification of spaces of Lorentz sequences”, Uzbek Math. J., 2017, no. 3, 169–173 (in Russian)
[11] Dodds P. G., Dodds T. K., Pagter B., “Noncommutative Köthe duality”, Trans. Amer. Math. Soc., 339:2 (1993), 717–750 | DOI | MR | Zbl
[12] Gohberg I. C., Krein M. G., Introduction to the Theory of Linear Nonselfadjoint Operators, Translations of Math. Monographs, 18, Amer. Math. Soc., Providence, RI, 1969 | DOI | MR | Zbl
[13] Lewis D. R., “An isomorphic characterization of the Schmidt class”, Composito Mathematica, 30:3 (1975), 293–297 | MR | Zbl
[14] Lord S., Sukochev F., Zanin D., Singular Traces. Theory and Applications, Walter de Gruyter GmbH, Berlin–Boston, 2013 | MR
[15] Simon B., Trace Ideals and their Applications, Math. Surveys and Monographs, 120, 2nd ed., Amer. Math. Soc., Providence, RI, 2005 | MR | Zbl
[16] Sourour A., “Isometries of norm ideals of compact operators”, J. Funct. Anal., 43 (1981), 69–77 | DOI | MR | Zbl