The uniqueness of the symmetric structure in ideals of compact operators
Vladikavkazskij matematičeskij žurnal, Tome 20 (2018) no. 1, pp. 30-37 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $H$ be a separable infinite-dimensional complex Hilbert space, let $\mathcal L(H)$ be the $C^*$-algebra of bounded linear operators acting in $H$, and let $\mathcal K(H)$ be the two-sided ideal of compact linear operators in $\mathcal L(H)$. Let $(E, \|\cdot\|_E)$ be a symmetric sequence space, and let $\mathcal{C}_E:=\{ x \in \mathcal K(\mathcal H) : \{s_n(x)\}_{n=1}^\infty \in E\}$ be the proper two-sided ideal in $\mathcal L(H)$, where $\{s_n(x)\}_{n=1}^{\infty}$ are the singular values of a compact operator $x$. It is known that $\mathcal{C}_E$ is a Banach symmetric ideal with respect to the norm $ \|x\|_{\mathcal C_E}=\|\{s_n(x)\}_{n=1}^{\infty}\|_E$. A symmetric ideal $\mathcal{C}_E$ is said to have a unique symmetric structure if $\mathcal{C}_E = \mathcal{C}_F$, that is $E =F$, modulo norm equivalence, whenever $(\mathcal{C}_E, \|\cdot\|_{\mathcal{C}_E})$ is isomorphic to another symmetric ideal $(\mathcal{C}_F, \|\cdot\|_{\mathcal{C}_F})$. At the Kent international conference on Banach space theory and its applications (Kent, Ohio, August 1979), A. Pelczynsky posted the following problem: (P) Does every symmetric ideal have a unique symmetric structure? This problem has positive solution for Schatten ideals $\mathcal{C}_p, \ 1\leq p < \infty$ (J. Arazy and J. Lindenstrauss, 1975). For arbitrary symmetric ideals problem (P) has not yet been solved. We consider a version of problem (P) replacing an isomorphism $U:(\mathcal{C}_E, \|\cdot\|_{\mathcal{C}_E}) \to (\mathcal{C}_F, \|\cdot\|_{\mathcal{C}_F})$ by a positive linear surjective isometry. We show that if $F$ is a strongly symmetric sequence space, then every positive linear surjective isometry $U:(\mathcal{C}_E, \|\cdot\|_{\mathcal{C}_E}) \to (\mathcal{C}_F, \|\cdot\|_{\mathcal{C}_F})$ is of the form $U(x) = u^*xu$, $x \in \mathcal C_E$, where $u \in \mathcal L(H)$ is a unitary or antiunitary operator. Using this description of positive linear surjective isometries, it is established that existence of such an isometry $U:\mathcal{C}_E \to \mathcal{C}_F$ implies that $(E, \|\cdot\|_E)=(F, \|\cdot\|_F)$.
@article{VMJ_2018_20_1_a3,
     author = {B. R. Aminov and V. I. Chilin},
     title = {The uniqueness of the symmetric structure in ideals of compact operators},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {30--37},
     year = {2018},
     volume = {20},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2018_20_1_a3/}
}
TY  - JOUR
AU  - B. R. Aminov
AU  - V. I. Chilin
TI  - The uniqueness of the symmetric structure in ideals of compact operators
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2018
SP  - 30
EP  - 37
VL  - 20
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMJ_2018_20_1_a3/
LA  - en
ID  - VMJ_2018_20_1_a3
ER  - 
%0 Journal Article
%A B. R. Aminov
%A V. I. Chilin
%T The uniqueness of the symmetric structure in ideals of compact operators
%J Vladikavkazskij matematičeskij žurnal
%D 2018
%P 30-37
%V 20
%N 1
%U http://geodesic.mathdoc.fr/item/VMJ_2018_20_1_a3/
%G en
%F VMJ_2018_20_1_a3
B. R. Aminov; V. I. Chilin. The uniqueness of the symmetric structure in ideals of compact operators. Vladikavkazskij matematičeskij žurnal, Tome 20 (2018) no. 1, pp. 30-37. http://geodesic.mathdoc.fr/item/VMJ_2018_20_1_a3/

[1] Abramovich Yu. A., “Isometries of norm latties”, Convex Anal. and Related Problems, 43(60) (1988), 74–80 (in Russian) | MR | Zbl

[2] Aminov B. R., Chilin V. I., “Isometries of perfect norm ideals of compact operators”, Studia Math., 241:1 (2018), 87–99 | DOI | MR | Zbl

[3] Arazy J., Lindenstrauss J., “Some linear topological properties of the spaces $C_p$ of operators on Hilbert space”, Composite Math., 30 (1975), 81–111 | DOI | MR | Zbl

[4] Arazy J., “Basic sequences, embeddings, and the uniqueness of the symmetric structure in unitary matrix spaces”, J. Func. Anal., 40 (1981), 302–340 | DOI | MR | Zbl

[5] Bennet C., Sharpley R., Interpolation of Operators, Acad. Press, INC, 1988, 483 pp. | MR | Zbl

[6] Bratteli O., Robinson D. W., Operator Algebras and Quantum Statistical Mechaniks, Springer-Verlag, N. Y.–Heidelber–Berlin, 1979 | MR

[7] Carothers N., Dilworth S., “Subspaces of $L_{p,q}$”, Proc. Amer. Math. Soc., 104:2 (1988), 537–545 | MR | Zbl

[8] Chilin V. I., Medzhitov A. M., Sukochev F. A., “Isometries of non-commutative Lorentz spaces”, Math. Z., 200 (1989), 527–545 | DOI | MR | Zbl

[9] Chilin V., Krygin A., Sukochev F., “Extreme points of convex fully symmetric sets of measurable operators”, Integr. Equat. Oper. Theory, 15 (1992), 186–226 | DOI | MR | Zbl

[10] Chilin V. I., Sadovskaya O. V., “Isomorphic classification of spaces of Lorentz sequences”, Uzbek Math. J., 2017, no. 3, 169–173 (in Russian)

[11] Dodds P. G., Dodds T. K., Pagter B., “Noncommutative Köthe duality”, Trans. Amer. Math. Soc., 339:2 (1993), 717–750 | DOI | MR | Zbl

[12] Gohberg I. C., Krein M. G., Introduction to the Theory of Linear Nonselfadjoint Operators, Translations of Math. Monographs, 18, Amer. Math. Soc., Providence, RI, 1969 | DOI | MR | Zbl

[13] Lewis D. R., “An isomorphic characterization of the Schmidt class”, Composito Mathematica, 30:3 (1975), 293–297 | MR | Zbl

[14] Lord S., Sukochev F., Zanin D., Singular Traces. Theory and Applications, Walter de Gruyter GmbH, Berlin–Boston, 2013 | MR

[15] Simon B., Trace Ideals and their Applications, Math. Surveys and Monographs, 120, 2nd ed., Amer. Math. Soc., Providence, RI, 2005 | MR | Zbl

[16] Sourour A., “Isometries of norm ideals of compact operators”, J. Funct. Anal., 43 (1981), 69–77 | DOI | MR | Zbl