On some problems in the theory of functions
Vladikavkazskij matematičeskij žurnal, Tome 19 (2017) no. 2, pp. 73-77
Cet article a éte moissonné depuis la source Math-Net.Ru
The paper devoted the memory of the outstanding Russian mathematician A. F. Leont'ev (1917–1987) consists of three sections. In § 1 the author sets one probably new hypothesis concerning the well known Riemann's Zeta Function $\zeta(z)$ and proves with the helps of this hypothesis that all zeros of $\zeta(z)$ are simple and lie only on the real axis and on the line $\Re z=1/2$. In § 2 the formulation of one theorem on convex functions from the first part of the monography of Hayman W. K. and Kennedy P. B. a bit is slightly corrected. In the last section the author express his gratitude to some mathematicians (especially to A. F. Leont'ev) who supported him throughout his comparatively long scientific career.
@article{VMJ_2017_19_2_a7,
author = {Yu. F. Korobeǐnik},
title = {On some problems in the theory of functions},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {73--77},
year = {2017},
volume = {19},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2017_19_2_a7/}
}
Yu. F. Korobeǐnik. On some problems in the theory of functions. Vladikavkazskij matematičeskij žurnal, Tome 19 (2017) no. 2, pp. 73-77. http://geodesic.mathdoc.fr/item/VMJ_2017_19_2_a7/
[1] Titchmarsh E. K., Teoriya dzeta-funktsii Rimana, Izd-vo inostr. lit-ry, M., 1953, 407 pp.
[2] Kheiman U., Kennedi P., Subgarmonicheskie funktsii, Mir, M., 1980, 304 pp.
[3] Hayman W. K., Kennedy P. B., Subharmonic functions, v. I, Academic Press, London–N. Y.–San Francisko, 1976 | MR | Zbl
[4] Krasnoselskii M. A., Rutitskii Ya. B., Vypuklye funktsii i prostranstva Orlicha, GIFML, M., 1958, 271 pp.