Gauss, Peterson--Codazzi, and Ricci equations in nonholonomic frames
Vladikavkazskij matematičeskij žurnal, Tome 19 (2017) no. 2, pp. 49-57

Voir la notice de l'article provenant de la source Math-Net.Ru

The isometric immersion of the $n$-dimensional pseudo-Riemannian manifold to an $m$-dimensional pseudo-Riemannian space of the constant curvature is under consideration. The manifold is assumed to be Hausdorff and orientable. Using the non-holonomic frames the author derived Gauss, Peterson–Codazzi, Ricci equations for $C^2$ immersion of this manifold into $m$-dimensional pseudo-Riemannian space of constant curvature. The main result is obtained with the use of generalized external de Rham derivation. It is found that in this context the forms of connectivity, immersion and torsion have continuous generalized exterior derivations.
@article{VMJ_2017_19_2_a5,
     author = {L. N. Shapovalova},
     title = {Gauss, {Peterson--Codazzi,} and {Ricci} equations in nonholonomic frames},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {49--57},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2017_19_2_a5/}
}
TY  - JOUR
AU  - L. N. Shapovalova
TI  - Gauss, Peterson--Codazzi, and Ricci equations in nonholonomic frames
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2017
SP  - 49
EP  - 57
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2017_19_2_a5/
LA  - ru
ID  - VMJ_2017_19_2_a5
ER  - 
%0 Journal Article
%A L. N. Shapovalova
%T Gauss, Peterson--Codazzi, and Ricci equations in nonholonomic frames
%J Vladikavkazskij matematičeskij žurnal
%D 2017
%P 49-57
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2017_19_2_a5/
%G ru
%F VMJ_2017_19_2_a5
L. N. Shapovalova. Gauss, Peterson--Codazzi, and Ricci equations in nonholonomic frames. Vladikavkazskij matematičeskij žurnal, Tome 19 (2017) no. 2, pp. 49-57. http://geodesic.mathdoc.fr/item/VMJ_2017_19_2_a5/