Gauss, Peterson–Codazzi, and Ricci equations in nonholonomic frames
Vladikavkazskij matematičeskij žurnal, Tome 19 (2017) no. 2, pp. 49-57 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The isometric immersion of the $n$-dimensional pseudo-Riemannian manifold to an $m$-dimensional pseudo-Riemannian space of the constant curvature is under consideration. The manifold is assumed to be Hausdorff and orientable. Using the non-holonomic frames the author derived Gauss, Peterson–Codazzi, Ricci equations for $C^2$ immersion of this manifold into $m$-dimensional pseudo-Riemannian space of constant curvature. The main result is obtained with the use of generalized external de Rham derivation. It is found that in this context the forms of connectivity, immersion and torsion have continuous generalized exterior derivations.
@article{VMJ_2017_19_2_a5,
     author = {L. N. Shapovalova},
     title = {Gauss, {Peterson{\textendash}Codazzi,} and {Ricci} equations in nonholonomic frames},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {49--57},
     year = {2017},
     volume = {19},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2017_19_2_a5/}
}
TY  - JOUR
AU  - L. N. Shapovalova
TI  - Gauss, Peterson–Codazzi, and Ricci equations in nonholonomic frames
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2017
SP  - 49
EP  - 57
VL  - 19
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMJ_2017_19_2_a5/
LA  - ru
ID  - VMJ_2017_19_2_a5
ER  - 
%0 Journal Article
%A L. N. Shapovalova
%T Gauss, Peterson–Codazzi, and Ricci equations in nonholonomic frames
%J Vladikavkazskij matematičeskij žurnal
%D 2017
%P 49-57
%V 19
%N 2
%U http://geodesic.mathdoc.fr/item/VMJ_2017_19_2_a5/
%G ru
%F VMJ_2017_19_2_a5
L. N. Shapovalova. Gauss, Peterson–Codazzi, and Ricci equations in nonholonomic frames. Vladikavkazskij matematičeskij žurnal, Tome 19 (2017) no. 2, pp. 49-57. http://geodesic.mathdoc.fr/item/VMJ_2017_19_2_a5/

[1] Eizenkhart L. P., Rimanova geometriya, GIIL, M., 1948, 316 pp.

[2] Klimentov S. B., “Globalnaya formulirovka osnovnoi teoremy teorii $n$-mernykh poverkhnostei v $m$-mernom prostranstve postoyannoi krivizny”, Ukr. geom. sb., 1979, no. 22, 64–81

[3] Borovskii Yu. E., “Sistemy Pfaffa s koeffitsientami iz $L_n$ i ikh geometricheskie prilozheniya”, Sib. mat. zhurn., 24:2 (1988), 10–16 | Zbl

[4] Markov P. E., “Obschie analiticheskie i beskonechno malye deformatsii pogruzhenii. I”, Izv. vuzov. Ser. Matematika, 1997, no. 9(424), 21–34

[5] Zulanke R., Vintgen P., Differentsialnaya geometriya i rassloeniya, Mir, M., 1975, 352 pp.

[6] Postnikov M. M., Gruppy i algebry Li, Uch. posobie, Nauka, M., 1982, 480 pp.

[7] Volf Dzh., Prostranstva postoyannoi krivizny, Nauka, M., 1982, 480 pp.

[8] Finikov S. P., Metod vneshnikh form Kartana v differentsialnoi geometrii, Gos. izd-vo tekhniko-teoreticheskoi lit-ry, M.–L., 1948, 432 pp.

[9] De Ram Zh., Differentsiruemye mnogoobraziya, GIIL, M., 1956, 250 pp. | MR

[10] Borovskii Yu. E., “Vpolne integriruemye sistemy Pfaffa”, Izv. vuzov. Ser. Matematika, 1959, no. 3, 35–38

[11] Markov P. E., “O pogruzhenii metrik, blizkikh k pogruzhaemym”, Ukr. geom. sb., 1992, no. 35, 49–67