@article{VMJ_2017_19_2_a4,
author = {R. R. Salimov},
title = {On the power order of growth of lower $Q$-homeomorphisms},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {36--48},
year = {2017},
volume = {19},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2017_19_2_a4/}
}
R. R. Salimov. On the power order of growth of lower $Q$-homeomorphisms. Vladikavkazskij matematičeskij žurnal, Tome 19 (2017) no. 2, pp. 36-48. http://geodesic.mathdoc.fr/item/VMJ_2017_19_2_a4/
[1] Martio O., Ryazanov V., Srebro U., Yakubov E., Moduli in Modern Mapping Theory, Springer Monogr. in Math., Springer, N. Y., 2009, 367 pp. | MR | Zbl
[2] Ryazanov V., Salimov R., Srebro U., Yakubov E., “On boundary value problems for the Beltrami equations”, Contemp. Math., 591, 2013, 211–242 | DOI | MR | Zbl
[3] Kovtonyuk D. A., Petkov I. V., Ryazanov V. I., Salimov R. R., “Granichnoe povedenie i zadacha Dirikhle dlya uravnenii Beltrami”, Algebra i analiz, 25:4 (2013), 101–124
[4] Afanaseva E. S., Ryazanov V. I., Salimov R. R., “Ob otobrazheniyakh v klassakh Orlicha–Soboleva na rimanovykh mnogoobraziyakh”, Ukr. mat. visnik, 8:3 (2011), 319–342
[5] Kovtonyuk D. A., Salimov R. R., Sevostyanov E. A., K teorii otobrazhenii klassov Soboleva i Orlicha–Soboleva, Naukova dumka, Kiev, 2013, 303 pp.
[6] Kovtonyuk D. A., Ryazanov V. I., Salimov R. R., Sevostyanov E. A., “K teorii klassov Orlicha–Soboleva”, Algebra i analiz, 25:6 (2013), 1–53
[7] Kovtonyuk D. A., Ryazanov V. I., Salimov R. R., Sevostyanov E. A., “Granichnoe povedenie klassov Orlicha–Soboleva”, Mat. zametki, 95:4 (2014), 564–576 | DOI | Zbl
[8] Salimov R. R., “Nizhnie otsenki $p$-modulya i otobrazheniya klassa Soboleva”, Algebra i analiz, 26:6 (2014), 143–171
[9] Salimov R. R., “Metricheskie svoistva klassov Orlicha–Soboleva”, Ukr. mat. visnik, 13:1 (2016), 129–141
[10] Salimov R. R., “O konechnoi lipshitsevosti klassov Orlicha–Soboleva”, Vladikavk. mat. zhurn., 17:1 (2015), 64–77
[11] Salimov R. R., “O novom uslovii konechnoi lipshitsevosti klassov Orlicha–Soboleva”, Mat. Studiï, 44:1 (2015), 27–35 | Zbl
[12] Ikoma K., “On the distortion and correspondence under quasiconformal mappings in space”, Nagoya Math. J., 25 (1965), 175–203 | DOI | MR
[13] Kovtonyuk D., Ryazanov V., “K teorii nizhnikh $Q$-gomeomorfizmov”, Ukr. mat. visnik, 5:2 (2008), 157–181
[14] Saks S., Teoriya integrala, Izd-vo inostr. lit-ry, M., 1949
[15] Martio O., Rickman S., Väisälä J., “Definitions for quasiregular mappings”, Ann. Acad. Sci. Fenn. Ser. A1. Math., 448 (1969), 1–40 | MR
[16] Shlyk V. A., “O ravenstve $p$-emkosti i $p$-modulya”, Sib. mat. zhurn., 34:6 (1993), 216–221 | Zbl
[17] Maz'ya V., “Lectures on isoperimetric and isocapacitary inequalities in the theory of Sobolev spaces”, Contemp. Math., 338, 2003, 307–340 | DOI | MR | Zbl
[18] Iwaniec T., Sverák V., “On mappings with integrable dilatation”, Proc. Amer. Math. Soc., 118 (1993), 181–188 | DOI | MR | Zbl
[19] Iwaniec T., Martin G., Geometrical Function Theory and Non-Linear Analysis, Clarendon Press, Oxford, 2001 | MR
[20] Krasnoselskii M. A., Rutitskii Ya. B., Vypuklye funktsii i prostranstva Orlicha, Fizmatlit, M., 1958
[21] Mazya V. G., Prostranstva S. L. Soboleva, LGU, Leningrad, 1985, 416 pp.
[22] Reshetnyak Yu. G., Prostranstvennye otobrazheniya s ogranichennym iskazheniem, Nauka, Novosibirsk, 1982