On the power order of growth of lower $Q$-homeomorphisms
Vladikavkazskij matematičeskij žurnal, Tome 19 (2017) no. 2, pp. 36-48 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the present paper we investigate the asymptotic behavior of $Q$-homeomorphisms with respect to a $p$-modulus at a point. The sufficient conditions on $Q$ under which a mapping has a certain order of growth are obtained. We also give some applications of these results to Orlicz–Sobolev classes $W^{1,\varphi}_{\mathrm{loc}}$ in $\mathbb{R}^n$, $n\geqslant 3$, under conditions of the Calderon type on $\varphi$ and, in particular, to Sobolev classes $W_{\mathrm{loc}}^{1,p},$ $p>n-1$. We give also an example of a homeomorphism demonstrating that the established order of growth is precise.
@article{VMJ_2017_19_2_a4,
     author = {R. R. Salimov},
     title = {On the power order of growth of lower $Q$-homeomorphisms},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {36--48},
     year = {2017},
     volume = {19},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2017_19_2_a4/}
}
TY  - JOUR
AU  - R. R. Salimov
TI  - On the power order of growth of lower $Q$-homeomorphisms
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2017
SP  - 36
EP  - 48
VL  - 19
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMJ_2017_19_2_a4/
LA  - ru
ID  - VMJ_2017_19_2_a4
ER  - 
%0 Journal Article
%A R. R. Salimov
%T On the power order of growth of lower $Q$-homeomorphisms
%J Vladikavkazskij matematičeskij žurnal
%D 2017
%P 36-48
%V 19
%N 2
%U http://geodesic.mathdoc.fr/item/VMJ_2017_19_2_a4/
%G ru
%F VMJ_2017_19_2_a4
R. R. Salimov. On the power order of growth of lower $Q$-homeomorphisms. Vladikavkazskij matematičeskij žurnal, Tome 19 (2017) no. 2, pp. 36-48. http://geodesic.mathdoc.fr/item/VMJ_2017_19_2_a4/

[1] Martio O., Ryazanov V., Srebro U., Yakubov E., Moduli in Modern Mapping Theory, Springer Monogr. in Math., Springer, N. Y., 2009, 367 pp. | MR | Zbl

[2] Ryazanov V., Salimov R., Srebro U., Yakubov E., “On boundary value problems for the Beltrami equations”, Contemp. Math., 591, 2013, 211–242 | DOI | MR | Zbl

[3] Kovtonyuk D. A., Petkov I. V., Ryazanov V. I., Salimov R. R., “Granichnoe povedenie i zadacha Dirikhle dlya uravnenii Beltrami”, Algebra i analiz, 25:4 (2013), 101–124

[4] Afanaseva E. S., Ryazanov V. I., Salimov R. R., “Ob otobrazheniyakh v klassakh Orlicha–Soboleva na rimanovykh mnogoobraziyakh”, Ukr. mat. visnik, 8:3 (2011), 319–342

[5] Kovtonyuk D. A., Salimov R. R., Sevostyanov E. A., K teorii otobrazhenii klassov Soboleva i Orlicha–Soboleva, Naukova dumka, Kiev, 2013, 303 pp.

[6] Kovtonyuk D. A., Ryazanov V. I., Salimov R. R., Sevostyanov E. A., “K teorii klassov Orlicha–Soboleva”, Algebra i analiz, 25:6 (2013), 1–53

[7] Kovtonyuk D. A., Ryazanov V. I., Salimov R. R., Sevostyanov E. A., “Granichnoe povedenie klassov Orlicha–Soboleva”, Mat. zametki, 95:4 (2014), 564–576 | DOI | Zbl

[8] Salimov R. R., “Nizhnie otsenki $p$-modulya i otobrazheniya klassa Soboleva”, Algebra i analiz, 26:6 (2014), 143–171

[9] Salimov R. R., “Metricheskie svoistva klassov Orlicha–Soboleva”, Ukr. mat. visnik, 13:1 (2016), 129–141

[10] Salimov R. R., “O konechnoi lipshitsevosti klassov Orlicha–Soboleva”, Vladikavk. mat. zhurn., 17:1 (2015), 64–77

[11] Salimov R. R., “O novom uslovii konechnoi lipshitsevosti klassov Orlicha–Soboleva”, Mat. Studiï, 44:1 (2015), 27–35 | Zbl

[12] Ikoma K., “On the distortion and correspondence under quasiconformal mappings in space”, Nagoya Math. J., 25 (1965), 175–203 | DOI | MR

[13] Kovtonyuk D., Ryazanov V., “K teorii nizhnikh $Q$-gomeomorfizmov”, Ukr. mat. visnik, 5:2 (2008), 157–181

[14] Saks S., Teoriya integrala, Izd-vo inostr. lit-ry, M., 1949

[15] Martio O., Rickman S., Väisälä J., “Definitions for quasiregular mappings”, Ann. Acad. Sci. Fenn. Ser. A1. Math., 448 (1969), 1–40 | MR

[16] Shlyk V. A., “O ravenstve $p$-emkosti i $p$-modulya”, Sib. mat. zhurn., 34:6 (1993), 216–221 | Zbl

[17] Maz'ya V., “Lectures on isoperimetric and isocapacitary inequalities in the theory of Sobolev spaces”, Contemp. Math., 338, 2003, 307–340 | DOI | MR | Zbl

[18] Iwaniec T., Sverák V., “On mappings with integrable dilatation”, Proc. Amer. Math. Soc., 118 (1993), 181–188 | DOI | MR | Zbl

[19] Iwaniec T., Martin G., Geometrical Function Theory and Non-Linear Analysis, Clarendon Press, Oxford, 2001 | MR

[20] Krasnoselskii M. A., Rutitskii Ya. B., Vypuklye funktsii i prostranstva Orlicha, Fizmatlit, M., 1958

[21] Mazya V. G., Prostranstva S. L. Soboleva, LGU, Leningrad, 1985, 416 pp.

[22] Reshetnyak Yu. G., Prostranstvennye otobrazheniya s ogranichennym iskazheniem, Nauka, Novosibirsk, 1982