On automorphisms of a distance-regular graph with intersection of arrays $\{39,30,4; 1,5,36\}$
Vladikavkazskij matematičeskij žurnal, Tome 19 (2017) no. 2, pp. 11-17 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

J. Koolen posed the problem of studying distance-regular graphs in which neighborhoods of vertices are strongly regular graphs with the second eigenvalue $\leq t$ for a given positive integer $t$. This problem is reduced to the description of distance-regular graphs in which neighborhoods of vertices are strongly regular graphs with non-principal eigenvalue $t$ for $t =1,2,\ldots$ Let $\Gamma$ be a distance regular graph of diameter $3$ with eigenvalues $\theta_0>\theta_1>\theta_2>\theta_3$. If $\theta_2= -1$, then by Proposition 4.2.17 from the book «Distance-Regular Graphs» (Brouwer A. E., Cohen A. M., Neumaier A.) the graph $\Gamma_3$ is strongly regular and $\Gamma$ is an antipodal graph if and only if $\Gamma_3$ is a coclique. Let $\Gamma$ be a distance-regular graph and the graphs $\Gamma_2$, $\Gamma_3$ are strongly regular. If $k <44$, then $\Gamma$ has an intersection array $\{19,12,5; 1,4,15\}$, $\{35,24,8; 1,6,28\}$ or $\{39,30,4; 1,5,36\}$. In the first two cases the graph does not exist according to the works of Degraer J. «Isomorph-free exhaustive generation algorithms for association schemes» and Jurisic A., Vidali J. «Extremal 1-codes in distance-regular graphs of diameter 3». In this paper we found the possible automorphisms of a distance regular graph with an array of intersections $\{39,30,4; 1,5,36\}$.
@article{VMJ_2017_19_2_a1,
     author = {A. K. Gutnova and A. A. Makhnev},
     title = {On automorphisms of a distance-regular graph with intersection of arrays $\{39,30,4; 1,5,36\}$},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {11--17},
     year = {2017},
     volume = {19},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2017_19_2_a1/}
}
TY  - JOUR
AU  - A. K. Gutnova
AU  - A. A. Makhnev
TI  - On automorphisms of a distance-regular graph with intersection of arrays $\{39,30,4; 1,5,36\}$
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2017
SP  - 11
EP  - 17
VL  - 19
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMJ_2017_19_2_a1/
LA  - ru
ID  - VMJ_2017_19_2_a1
ER  - 
%0 Journal Article
%A A. K. Gutnova
%A A. A. Makhnev
%T On automorphisms of a distance-regular graph with intersection of arrays $\{39,30,4; 1,5,36\}$
%J Vladikavkazskij matematičeskij žurnal
%D 2017
%P 11-17
%V 19
%N 2
%U http://geodesic.mathdoc.fr/item/VMJ_2017_19_2_a1/
%G ru
%F VMJ_2017_19_2_a1
A. K. Gutnova; A. A. Makhnev. On automorphisms of a distance-regular graph with intersection of arrays $\{39,30,4; 1,5,36\}$. Vladikavkazskij matematičeskij žurnal, Tome 19 (2017) no. 2, pp. 11-17. http://geodesic.mathdoc.fr/item/VMJ_2017_19_2_a1/

[1] Brouwer A. E., Cohen A. M., Neumaier A., Distance-regular Graphs, Springer-Verlag, Berlin etc., 1989 | MR | Zbl

[2] Degraer J., Isomorph-free exhaustive generation algorithms for association schemes, PhD Thesis, Univ. Ghent, 2007, 221 pp.

[3] Jurisic A., Vidali J., “Extremal 1-codes in distance-regular graphs of diameter 3”, Des. Codes Cryptogr., 65 (2012), 29–47 | DOI | MR | Zbl

[4] Behbahani M., Lam C., “Strongly regular graphs with nontrivial automorphisms”, Discrete Math., 311 (2011), 132–144 | DOI | MR | Zbl

[5] Cameron P. J., Permutation Groups, London Math. Soc. Student Texts, 45, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl

[6] Gavrilyuk A. L., Makhnev A. A., “Ob avtomorfizmakh distantsionno regulyarnogo grafa s massivom peresechenii $\{56,45,1;1,9,56\}$”, Dokl. AN, 432:5 (2010), 512–515

[7] Zavarnitsine A. V., “Finite simple groups with narrow prime spectrum”, Sibirean Electr. Math. Reports, 6 (2009), 1–12 | MR | Zbl