$L_p-L_q$-estimates for generalized Riss potentials with oscillating
Vladikavkazskij matematičeskij žurnal, Tome 19 (2017) no. 2, pp. 3-10
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a class of multidimensional potential-type operators
whose kernels are oscillating at infinity. The characteristics of these operators
are infinitely differentiable homogeneous functions. We describe convex sets
in the $(1/p;1/q)$-plane for which these operators are bounded from $L_p$
into $L_q$ and indicate the domains where they are not bounded. In some cases
we describe their $\mathcal{L}$-characteristics. To obtain these results we use
a new method based on special representation of the symbols of multidimensional
potential-type operators. To these representations of the symbols we apply the technique
of Fourier-multipliers, which degenerate or have singularities on the unit
sphere in $\mathbb{R}^n$.
@article{VMJ_2017_19_2_a0,
author = {M. N. Gurov and V. A. Nogin},
title = {$L_p-L_q$-estimates for generalized {Riss} potentials with oscillating},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {3--10},
publisher = {mathdoc},
volume = {19},
number = {2},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2017_19_2_a0/}
}
TY - JOUR AU - M. N. Gurov AU - V. A. Nogin TI - $L_p-L_q$-estimates for generalized Riss potentials with oscillating JO - Vladikavkazskij matematičeskij žurnal PY - 2017 SP - 3 EP - 10 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMJ_2017_19_2_a0/ LA - ru ID - VMJ_2017_19_2_a0 ER -
M. N. Gurov; V. A. Nogin. $L_p-L_q$-estimates for generalized Riss potentials with oscillating. Vladikavkazskij matematičeskij žurnal, Tome 19 (2017) no. 2, pp. 3-10. http://geodesic.mathdoc.fr/item/VMJ_2017_19_2_a0/