$L_p-L_q$-estimates for generalized Riss potentials with oscillating
Vladikavkazskij matematičeskij žurnal, Tome 19 (2017) no. 2, pp. 3-10

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a class of multidimensional potential-type operators whose kernels are oscillating at infinity. The characteristics of these operators are infinitely differentiable homogeneous functions. We describe convex sets in the $(1/p;1/q)$-plane for which these operators are bounded from $L_p$ into $L_q$ and indicate the domains where they are not bounded. In some cases we describe their $\mathcal{L}$-characteristics. To obtain these results we use a new method based on special representation of the symbols of multidimensional potential-type operators. To these representations of the symbols we apply the technique of Fourier-multipliers, which degenerate or have singularities on the unit sphere in $\mathbb{R}^n$.
@article{VMJ_2017_19_2_a0,
     author = {M. N. Gurov and V. A. Nogin},
     title = {$L_p-L_q$-estimates for generalized {Riss} potentials with oscillating},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {3--10},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2017_19_2_a0/}
}
TY  - JOUR
AU  - M. N. Gurov
AU  - V. A. Nogin
TI  - $L_p-L_q$-estimates for generalized Riss potentials with oscillating
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2017
SP  - 3
EP  - 10
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2017_19_2_a0/
LA  - ru
ID  - VMJ_2017_19_2_a0
ER  - 
%0 Journal Article
%A M. N. Gurov
%A V. A. Nogin
%T $L_p-L_q$-estimates for generalized Riss potentials with oscillating
%J Vladikavkazskij matematičeskij žurnal
%D 2017
%P 3-10
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2017_19_2_a0/
%G ru
%F VMJ_2017_19_2_a0
M. N. Gurov; V. A. Nogin. $L_p-L_q$-estimates for generalized Riss potentials with oscillating. Vladikavkazskij matematičeskij žurnal, Tome 19 (2017) no. 2, pp. 3-10. http://geodesic.mathdoc.fr/item/VMJ_2017_19_2_a0/