The multidimensional analog of the Biberbach hypothesis for generalized star functions in the space $\mathbb{C}^n$, $n\geqslant 2$
Vladikavkazskij matematičeskij žurnal, Tome 19 (2017) no. 1, pp. 67-71
Voir la notice de l'article provenant de la source Math-Net.Ru
The article is an addition to the fundamental results of the geometric theory of multidimensional complex analysis problems for classes of holomorphic functions. The radii parameterization of the Reinhart region boundaries enables one to built effective sufficient conditions for the generalized star functions as a multivariate analogue of the Biberbach hypothesis.
@article{VMJ_2017_19_1_a8,
author = {M. D. Sultygov},
title = {The multidimensional analog of the {Biberbach} hypothesis for generalized star functions in the space $\mathbb{C}^n$, $n\geqslant 2$},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {67--71},
publisher = {mathdoc},
volume = {19},
number = {1},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2017_19_1_a8/}
}
TY - JOUR
AU - M. D. Sultygov
TI - The multidimensional analog of the Biberbach hypothesis for generalized star functions in the space $\mathbb{C}^n$, $n\geqslant 2$
JO - Vladikavkazskij matematičeskij žurnal
PY - 2017
SP - 67
EP - 71
VL - 19
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/VMJ_2017_19_1_a8/
LA - ru
ID - VMJ_2017_19_1_a8
ER -
%0 Journal Article
%A M. D. Sultygov
%T The multidimensional analog of the Biberbach hypothesis for generalized star functions in the space $\mathbb{C}^n$, $n\geqslant 2$
%J Vladikavkazskij matematičeskij žurnal
%D 2017
%P 67-71
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2017_19_1_a8/
%G ru
%F VMJ_2017_19_1_a8
M. D. Sultygov. The multidimensional analog of the Biberbach hypothesis for generalized star functions in the space $\mathbb{C}^n$, $n\geqslant 2$. Vladikavkazskij matematičeskij žurnal, Tome 19 (2017) no. 1, pp. 67-71. http://geodesic.mathdoc.fr/item/VMJ_2017_19_1_a8/