On distribution of zeros for a class of meromorphic functions
    
    
  
  
  
      
      
      
        
Vladikavkazskij matematičeskij žurnal, Tome 19 (2017) no. 1, pp. 41-49
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this article some class $\mathcal{K}_0$ of meromorphic functions
 is introduced. Each function $y(z)$ from $\mathcal{K}_0$
 satisfies the functional equation $y(z)=b_y(z)y(1-z)$ with its own «Riemann's multiplier»
 $b_y(z)$ which is a meromorphic function with real zeros and poles.
 All poles of an arbitrary function from $\mathcal{K}_0$ are real and
 belong to the interval $(\frac12,\frac12+h_1]$, $h_1=h_1(y)$.
 Using the theory of residues we prove some relation
 connecting the following magnitudes: $\mathcal{P}_y$, the
 sum of all orders of poles of $y \in \mathcal{K}_0$;
 $\mathcal{N}_y(T)$, the sum of multiplicities of all zeros of $y$
 having the form $\frac12 +i\tau$, $|\tau|$;
 $\mathcal{N}_y(T,\sigma)$, the sum of multiplicities of all zeros
 of $y$ which lies inside the rectangle with vertices
 $A=\frac12-\sigma - iT$, $C=\frac12+\sigma - iT$, $D=\frac12+\sigma
 + iT$, $F=\frac12-\sigma + iT$. Here $T$ is a $y$-regular ordinate,
 that is, $y(z)$ is analytic  and has no zeros on the line
 $\operatorname{Im} z =T$, $\operatorname{Re} z \in \mathbb{R}$,
 $\sigma\in (h_1,h)$, $h=h(y)$, $\sigma$ is chosen in such a manner
 that $y(z)\ne 0$ on the segments $[F,A]$ and $[C,D]$.
 The problem of finding the magnitudes of
 $\mathcal{P}_y$, $\mathcal{N}_y(T)$ and $\mathcal{N}_y(T,\sigma)$
 with the help of corresponding characteristics of the «Riemann's
 multiplier» $b_y(z)$ is posed. This problem is solved in the paper for $\mathcal{P}_y$.
 Moreover, the obtained equality enables one to deduce a
 definite relation the left part of which contains the number
 $2\alpha_{T_0}+ 4\beta_{T_0}$ where $T_0$ is arbitrary
 $y$-nonregular ordinate, $\alpha_{T_0}$ is the multiplicities of all
 possible zero of $y$ of the form $\frac12+iT_0$, $\beta_{T_0}$ is
 the sum of multiplicities of all possible zeros of $y$ belonging to
 $\frac12+iT_0,+\infty +iT_0$.
 It is proved that the class $\mathcal{K}_0$ contains the Riemann's
 Zeta-Function.
			
            
            
            
          
        
      @article{VMJ_2017_19_1_a5,
     author = {Yu. F. Korobeǐnik},
     title = {On distribution of zeros for a class of meromorphic functions},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {41--49},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2017_19_1_a5/}
}
                      
                      
                    Yu. F. Korobeǐnik. On distribution of zeros for a class of meromorphic functions. Vladikavkazskij matematičeskij žurnal, Tome 19 (2017) no. 1, pp. 41-49. http://geodesic.mathdoc.fr/item/VMJ_2017_19_1_a5/
