On combinations of the circle shifts and some one-dimensional integral operators
    
    
  
  
  
      
      
      
        
Vladikavkazskij matematičeskij žurnal, Tome 19 (2017) no. 1, pp. 30-40
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The diffeomorphism $\zeta=\zeta(e^{is})$ of the unit
circle and the operator $\Psi \varphi(t) = \frac{1}{\pi i}
\int\nolimits_{\Gamma}
\left[\frac{\zeta'(\tau)}{\zeta(\tau)-\zeta(t)} - \frac{1}{\tau-t}
\right] \varphi(\tau)d \tau$ are under consideration. The main
results can be stated as follows: If $\zeta(t) \in
C^{1,\alpha}(\Gamma)$, $0\alpha\leqslant 1$, $\varphi(t) \in
C^{0,\beta}(\Gamma)$, $0\beta \leqslant 1$, $\mu=\alpha+\beta\leqslant 2$,
then $\Psi \varphi (t) \in C^{\mu}(\Gamma)$ for $\mu  1$. Moreover,
the following  inequality holds:
\begin{equation*}
\|\Psi \varphi (t)\|_{C^{\mu}(\Gamma)} \leqslant {\rm const}
\|\varphi(t)\|_{C^{0,\beta}(\Gamma)},
\end{equation*}
where the constant depends  on $\|\zeta\|_{C^{1,\alpha}(\Gamma)}$
only. If $\mu=1$, then $ \Psi \varphi (t) \in C^{\mu
-\varepsilon}(\Gamma)$ for all $0\varepsilon\mu$ and the similar
inequality holds. If $\mu>1$, then $ \Psi \varphi (t) \in C^{1,\mu
-1}(\Gamma)$, and
\begin{equation*}
\|\Psi \varphi (t)\|_{C^{1,\mu-1}(\Gamma)} \leqslant {\rm const}
\|\varphi(t)\|_{C^{0,\beta}(\Gamma)},
\end{equation*}
where the constant depends on $\|\zeta\|_{C^{1,\alpha}(\Gamma)}$
only. If $\zeta(t) \in C^{1,\alpha}(\Gamma)$, $0\alpha\leqslant  1$,
$\varphi(t) \in C^{1,\beta}(\Gamma)$, $0\beta \leqslant 1$, then  $ \Psi
\varphi (t) \in C^{1,\alpha}(\Gamma)$, and
\begin{equation*}
\|\Psi \varphi (t)\|_{C^{1,\alpha}(\Gamma)} \leqslant \mathrm{const}\,
\|\varphi(t)\|_{C^{0,1}(\Gamma)} \leqslant \mathrm{const}\,
\|\varphi(t)\|_{C^{1,\beta}(\Gamma)},
\end{equation*}
where the constant depends  on $\|\zeta\|_{C^{1,\alpha}(\Gamma)}$
only. The index $\alpha$ in the left-hand side of the last
inequality can not be improved. The appropriate example is
given.
			
            
            
            
          
        
      @article{VMJ_2017_19_1_a4,
     author = {S. B. Klimentov},
     title = {On combinations of the circle shifts and some one-dimensional integral operators},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {30--40},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2017_19_1_a4/}
}
                      
                      
                    TY - JOUR AU - S. B. Klimentov TI - On combinations of the circle shifts and some one-dimensional integral operators JO - Vladikavkazskij matematičeskij žurnal PY - 2017 SP - 30 EP - 40 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMJ_2017_19_1_a4/ LA - ru ID - VMJ_2017_19_1_a4 ER -
S. B. Klimentov. On combinations of the circle shifts and some one-dimensional integral operators. Vladikavkazskij matematičeskij žurnal, Tome 19 (2017) no. 1, pp. 30-40. http://geodesic.mathdoc.fr/item/VMJ_2017_19_1_a4/
