On combinations of the circle shifts and some one-dimensional integral operators
Vladikavkazskij matematičeskij žurnal, Tome 19 (2017) no. 1, pp. 30-40

Voir la notice de l'article provenant de la source Math-Net.Ru

The diffeomorphism $\zeta=\zeta(e^{is})$ of the unit circle and the operator $\Psi \varphi(t) = \frac{1}{\pi i} \int\nolimits_{\Gamma} \left[\frac{\zeta'(\tau)}{\zeta(\tau)-\zeta(t)} - \frac{1}{\tau-t} \right] \varphi(\tau)d \tau$ are under consideration. The main results can be stated as follows: If $\zeta(t) \in C^{1,\alpha}(\Gamma)$, $0\alpha\leqslant 1$, $\varphi(t) \in C^{0,\beta}(\Gamma)$, $0\beta \leqslant 1$, $\mu=\alpha+\beta\leqslant 2$, then $\Psi \varphi (t) \in C^{\mu}(\Gamma)$ for $\mu 1$. Moreover, the following inequality holds: \begin{equation*} \|\Psi \varphi (t)\|_{C^{\mu}(\Gamma)} \leqslant {\rm const} \|\varphi(t)\|_{C^{0,\beta}(\Gamma)}, \end{equation*} where the constant depends on $\|\zeta\|_{C^{1,\alpha}(\Gamma)}$ only. If $\mu=1$, then $ \Psi \varphi (t) \in C^{\mu -\varepsilon}(\Gamma)$ for all $0\varepsilon\mu$ and the similar inequality holds. If $\mu>1$, then $ \Psi \varphi (t) \in C^{1,\mu -1}(\Gamma)$, and \begin{equation*} \|\Psi \varphi (t)\|_{C^{1,\mu-1}(\Gamma)} \leqslant {\rm const} \|\varphi(t)\|_{C^{0,\beta}(\Gamma)}, \end{equation*} where the constant depends on $\|\zeta\|_{C^{1,\alpha}(\Gamma)}$ only. If $\zeta(t) \in C^{1,\alpha}(\Gamma)$, $0\alpha\leqslant 1$, $\varphi(t) \in C^{1,\beta}(\Gamma)$, $0\beta \leqslant 1$, then $ \Psi \varphi (t) \in C^{1,\alpha}(\Gamma)$, and \begin{equation*} \|\Psi \varphi (t)\|_{C^{1,\alpha}(\Gamma)} \leqslant \mathrm{const}\, \|\varphi(t)\|_{C^{0,1}(\Gamma)} \leqslant \mathrm{const}\, \|\varphi(t)\|_{C^{1,\beta}(\Gamma)}, \end{equation*} where the constant depends on $\|\zeta\|_{C^{1,\alpha}(\Gamma)}$ only. The index $\alpha$ in the left-hand side of the last inequality can not be improved. The appropriate example is given.
@article{VMJ_2017_19_1_a4,
     author = {S. B. Klimentov},
     title = {On combinations of the circle shifts and some one-dimensional integral operators},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {30--40},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2017_19_1_a4/}
}
TY  - JOUR
AU  - S. B. Klimentov
TI  - On combinations of the circle shifts and some one-dimensional integral operators
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2017
SP  - 30
EP  - 40
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2017_19_1_a4/
LA  - ru
ID  - VMJ_2017_19_1_a4
ER  - 
%0 Journal Article
%A S. B. Klimentov
%T On combinations of the circle shifts and some one-dimensional integral operators
%J Vladikavkazskij matematičeskij žurnal
%D 2017
%P 30-40
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2017_19_1_a4/
%G ru
%F VMJ_2017_19_1_a4
S. B. Klimentov. On combinations of the circle shifts and some one-dimensional integral operators. Vladikavkazskij matematičeskij žurnal, Tome 19 (2017) no. 1, pp. 30-40. http://geodesic.mathdoc.fr/item/VMJ_2017_19_1_a4/