Cyclical elementary nets
Vladikavkazskij matematičeskij žurnal, Tome 19 (2017) no. 1, pp. 26-29
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $R$ be a commutative ring with the unit and $n\in\mathbb{N}$. A set $\sigma = (\sigma_{ij})$, $1\leqslant{i, j} \leqslant{n},$ of additive subgroups of the ring $R$ is a net over $R$ of order $n$, if $ \sigma_{ir} \sigma_{rj} \subseteq{\sigma_{ij}} $ for all $1\leqslant i, r, j\leqslant n$. A net which doesn't contain the diagonal is called an elementary net. An elementary net $\sigma = (\sigma_{ij}), 1\leqslant{i\neq{j} \leqslant{n}}$, is complemented, if for some additive subgroups $\sigma_{ii}$ of $R$ the set $\sigma = (\sigma_{ij}), 1\leqslant{i, j} \leqslant{n}$ is a full net. An elementary net $\sigma$ is called closed, if the elementary group $ E(\sigma) = \langle t_{ij}(\alpha) : \alpha\in \sigma_{ij}, 1\leqslant{i\neq{j}} \leqslant{n}\rangle $ doesn't contain elementary transvections. It is proved that the cyclic elementary odd-order nets are complemented. In particular, all such nets are closed. It is also shown that for every odd $n\in\mathbb{N}$ there exists an elementary cyclic net which is not complemented.
@article{VMJ_2017_19_1_a3,
author = {N. A. Dzhusoeva and R. Y. Dryaeva},
title = {Cyclical elementary nets},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {26--29},
publisher = {mathdoc},
volume = {19},
number = {1},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2017_19_1_a3/}
}
N. A. Dzhusoeva; R. Y. Dryaeva. Cyclical elementary nets. Vladikavkazskij matematičeskij žurnal, Tome 19 (2017) no. 1, pp. 26-29. http://geodesic.mathdoc.fr/item/VMJ_2017_19_1_a3/