Automorphisms of the Cameron's monster with parameters $(6138, 1197, 156, 252)$
    
    
  
  
  
      
      
      
        
Vladikavkazskij matematičeskij žurnal, Tome 19 (2017) no. 1, pp. 11-17
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let the $3$-$(V, K, \Lambda)$ scheme $E=(X,B)$ be an extension of the symmetric 2-scheme. Then either $E$ is Hadamard $3$-$(4\Lambda + 4, 2\Lambda + 2,\Lambda)$ scheme, or $V = (\Lambda + 1)(\Lambda^2 + 5\Lambda + 5)$ and $K = (\Lambda + 1)(\Lambda + 2)$, or $V = 496$, $K = 40$ and $\Lambda = 3$. The complementary graph of a block graph of $3$-$(496,40,3)$ scheme is strongly regular with parameters $(6138,1197,156,252).$ Let's call this complementary graph Cameron's monster. In this paper automorphisms of monster are studied.
			
            
            
            
          
        
      @article{VMJ_2017_19_1_a1,
     author = {V. V. Bitkina},
     title = {Automorphisms of the {Cameron's} monster with parameters $(6138, 1197, 156, 252)$},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {11--17},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2017_19_1_a1/}
}
                      
                      
                    TY - JOUR AU - V. V. Bitkina TI - Automorphisms of the Cameron's monster with parameters $(6138, 1197, 156, 252)$ JO - Vladikavkazskij matematičeskij žurnal PY - 2017 SP - 11 EP - 17 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMJ_2017_19_1_a1/ LA - ru ID - VMJ_2017_19_1_a1 ER -
V. V. Bitkina. Automorphisms of the Cameron's monster with parameters $(6138, 1197, 156, 252)$. Vladikavkazskij matematičeskij žurnal, Tome 19 (2017) no. 1, pp. 11-17. http://geodesic.mathdoc.fr/item/VMJ_2017_19_1_a1/
