The net and elementary net group associated with non-split maximal torus
Vladikavkazskij matematičeskij žurnal, Tome 17 (2015) no. 2, pp. 12-15

Voir la notice de l'article provenant de la source Math-Net.Ru

The elements of matrixes of a non-split maximal torus $T=T(d)$ (associated with a radical extension $k(\sqrt[n]d)$ of degree $n$ of the ground field $k$) generate some subring $R(d)$ of the field $k$. Let $R$ be an intermediate subring, $R(d)\subseteq R\subseteq k$, $d\in R$, $A_1\subseteq\dots\subseteq A_n$ be a chain of ideals of the ring $R$, and $dA_n\subseteq A_1$. By $\sigma=(\sigma_{ij})$ we denote the net of ideals defined by $\sigma_{ij}=A_{i+1-j}$ with $j\leq i$ and $\sigma_{ij}=dA_{n+i+1-j}$ with $j\geq i+1$. By $G(\sigma)$ and $E(\sigma)$ we denote the net and the elementary net group, respectively. It is proved, that $TG(\sigma)$ and $TE(\sigma)$ are intermediate subgroups of $GL(n, k)$ containing the torus $T$.
@article{VMJ_2015_17_2_a1,
     author = {N. A. Djusoeva},
     title = {The net and elementary net group associated with non-split maximal torus},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {12--15},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2015_17_2_a1/}
}
TY  - JOUR
AU  - N. A. Djusoeva
TI  - The net and elementary net group associated with non-split maximal torus
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2015
SP  - 12
EP  - 15
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2015_17_2_a1/
LA  - ru
ID  - VMJ_2015_17_2_a1
ER  - 
%0 Journal Article
%A N. A. Djusoeva
%T The net and elementary net group associated with non-split maximal torus
%J Vladikavkazskij matematičeskij žurnal
%D 2015
%P 12-15
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2015_17_2_a1/
%G ru
%F VMJ_2015_17_2_a1
N. A. Djusoeva. The net and elementary net group associated with non-split maximal torus. Vladikavkazskij matematičeskij žurnal, Tome 17 (2015) no. 2, pp. 12-15. http://geodesic.mathdoc.fr/item/VMJ_2015_17_2_a1/