Direct and inverse problems for a~singular system with slow and fast variables in chemical kinetics
    
    
  
  
  
      
      
      
        
Vladikavkazskij matematičeskij žurnal, Tome 17 (2015) no. 1, pp. 39-46
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Direct and inverse problems for singular systems with small parameter are stated, which describe catalytic reactions in chemical kinetics. The solution of the direct problem is based on the method of integral manifolds. The inverse problem reduces to finding the coefficients of the polynomial in the right-hand part of the slow equation according to the solution given on the slow surface of the system. The above arguments make it possible to obtain existence and uniqueness conditions for the coefficients in the right-hand part of the slow subsystem of the degenerate system.
			
            
            
            
          
        
      @article{VMJ_2015_17_1_a4,
     author = {L. I. Kononenko},
     title = {Direct and inverse problems for a~singular system with slow and fast variables in chemical kinetics},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {39--46},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2015_17_1_a4/}
}
                      
                      
                    TY - JOUR AU - L. I. Kononenko TI - Direct and inverse problems for a~singular system with slow and fast variables in chemical kinetics JO - Vladikavkazskij matematičeskij žurnal PY - 2015 SP - 39 EP - 46 VL - 17 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMJ_2015_17_1_a4/ LA - ru ID - VMJ_2015_17_1_a4 ER -
L. I. Kononenko. Direct and inverse problems for a~singular system with slow and fast variables in chemical kinetics. Vladikavkazskij matematičeskij žurnal, Tome 17 (2015) no. 1, pp. 39-46. http://geodesic.mathdoc.fr/item/VMJ_2015_17_1_a4/
