CN-edge domination in graphs
Vladikavkazskij matematičeskij žurnal, Tome 15 (2013) no. 2, pp. 11-17 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $G=(V,E)$ be a graph. A subset $D$ of $V$ is called common neighbourhood dominating set (CN-dominating set) if for every $v\in V-D$ there exists a vertex $u\in D$ such that $uv\in E(G)$ and $|\Gamma(u,v)|\geq1$, where $|\Gamma(u,v)|$ is the number of common neighbourhood between the vertices $u$ and $v$. The minimum cardinality of such CN-dominating set denoted by $\gamma_{cn}(G)$ and is called common neighbourhood domination number (CN-edge domination) of $G$. In this paper we introduce the concept of common neighbourhood edge domination (CN-edge domination) and common neighbourhood edge domatic number (CN-edge domatic number) in a graph, exact values for some standard graphs, bounds and some interesting results are established.
@article{VMJ_2013_15_2_a1,
     author = {A. Alwardi and N. D. Soner},
     title = {CN-edge domination in graphs},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {11--17},
     year = {2013},
     volume = {15},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2013_15_2_a1/}
}
TY  - JOUR
AU  - A. Alwardi
AU  - N. D. Soner
TI  - CN-edge domination in graphs
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2013
SP  - 11
EP  - 17
VL  - 15
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMJ_2013_15_2_a1/
LA  - en
ID  - VMJ_2013_15_2_a1
ER  - 
%0 Journal Article
%A A. Alwardi
%A N. D. Soner
%T CN-edge domination in graphs
%J Vladikavkazskij matematičeskij žurnal
%D 2013
%P 11-17
%V 15
%N 2
%U http://geodesic.mathdoc.fr/item/VMJ_2013_15_2_a1/
%G en
%F VMJ_2013_15_2_a1
A. Alwardi; N. D. Soner. CN-edge domination in graphs. Vladikavkazskij matematičeskij žurnal, Tome 15 (2013) no. 2, pp. 11-17. http://geodesic.mathdoc.fr/item/VMJ_2013_15_2_a1/

[1] Alwardi A., Soner N. D., Ebadi K., “On the Common neighbourhood domination number”, J. of Computer and Math. Sciences, 2:3 (2011), 547–556

[2] Bondy J., Murthy U., Graph Theory with Applications, North Holland, New York, 1976

[3] Dharmalingam K. D., Studies in graph theorey-equitable domination and bottleneck domination, Ph. D. Thesis, 2006

[4] Godsil C., Royle G., Algebraic Graph Theory, Ser. Graduate Texts in Math., 207, Springer-Verlag, New York, 2001 | DOI | MR | Zbl

[5] Harary F., Graph Theory, Addison-Wesley, Boston, 1969 | MR | Zbl

[6] Haynes T. W., Hedetniemi S. T., Slater P. J., Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, 1998 | MR

[7] Jayaram S. R., “Line domination in graphs”, Graphs Combin., 3 (1987), 357–363 | DOI | MR | Zbl

[8] Mitchell S., Hedetniemi S. T., “Edge domination in trees”, Congr. Numer., 19 (1977), 489–509 | MR

[9] Sampathkumar E., Neeralagi P. S., “The neighborhood number of a graph”, Indian J. Pure and Appl. Math., 16:2 (1985), 126–132 | MR | Zbl

[10] Walikar H. B., Acharya B. D., Sampathkumar E., Recent Developments in the Theory of Domination in Graphs and Its Applications, MRI Lecture Notes in Math., 1, Mehta Research instutute, Alahabad, 1979, 241 pp.

[11] Haynes T. W., Hedetniemi S. T., Slater P. J., Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, 1998 | MR

[12] Hedetneimi S. M., Hedetneimi S. T., Laskar R. C., Markus L., Slater P. J., “Disjoint dominating sets in graphs”, Proc. Int. Conf. on Disc. Math., IMI-IISc, Bangalore, 2006, 88–101

[13] Kulli V. R., Sigarkanti S. C., “Further results on the neighborhood number of a graph”, Indian J. Pure and Appl. Math., 23:8 (1992), 575–577 | MR | Zbl

[14] Sampathkumar E., Neeralagi P. S., “The neighborhood number of a graph”, Indian J. Pure and Appl. Math., 16:2 (1985), 126–132 | MR | Zbl