Closed pairs
Vladikavkazskij matematičeskij žurnal, Tome 13 (2011) no. 3, pp. 36-41

Voir la notice de l'article provenant de la source Math-Net.Ru

This is a study of closed pairs of abelian groups (closed elementary nets of degree 2). If the elementary group $E(\sigma)$ does not contain new elementary transvections, then an elementary net $\sigma$ (the net without the diagonal) is called closed. Closed pairs we construct from the subgroup of a polynomial ring. Let $R_1[x]$ – the ring of polynomials (of variable $x$ with coefficients in a domain $R$) with zero constant term. We prove the following result. Theorem. Let $A,B$ – additive subgroups of $R_1[x]$. Then the pair $(A,B)$ is closed. In other words, if $t_{12}(\beta)$ or $t_{21}(\alpha)$ is contained in subgroup $\langle t_{21}(A),t_{12}(B)\rangle$, then $\beta\in B$, $\alpha\in A$.
@article{VMJ_2011_13_3_a3,
     author = {V. A. Koibaev},
     title = {Closed pairs},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {36--41},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2011_13_3_a3/}
}
TY  - JOUR
AU  - V. A. Koibaev
TI  - Closed pairs
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2011
SP  - 36
EP  - 41
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2011_13_3_a3/
LA  - ru
ID  - VMJ_2011_13_3_a3
ER  - 
%0 Journal Article
%A V. A. Koibaev
%T Closed pairs
%J Vladikavkazskij matematičeskij žurnal
%D 2011
%P 36-41
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2011_13_3_a3/
%G ru
%F VMJ_2011_13_3_a3
V. A. Koibaev. Closed pairs. Vladikavkazskij matematičeskij žurnal, Tome 13 (2011) no. 3, pp. 36-41. http://geodesic.mathdoc.fr/item/VMJ_2011_13_3_a3/