When all separately band preserving bilinear operators are symmetric?
Vladikavkazskij matematičeskij žurnal, Tome 9 (2007) no. 2, pp. 22-25

Voir la notice de l'article provenant de la source Math-Net.Ru

A purely algebraic characterization of universally complete vector lattices in which all separately band preserving bilinear operators are symmetric is obtained: this class consists of universally complete vector lattices with $\sigma$-distributive Boolean algebra of bands.
@article{VMJ_2007_9_2_a2,
     author = {A. G. Kusraev},
     title = {When all separately band preserving bilinear operators are symmetric?},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {22--25},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2007_9_2_a2/}
}
TY  - JOUR
AU  - A. G. Kusraev
TI  - When all separately band preserving bilinear operators are symmetric?
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2007
SP  - 22
EP  - 25
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2007_9_2_a2/
LA  - en
ID  - VMJ_2007_9_2_a2
ER  - 
%0 Journal Article
%A A. G. Kusraev
%T When all separately band preserving bilinear operators are symmetric?
%J Vladikavkazskij matematičeskij žurnal
%D 2007
%P 22-25
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2007_9_2_a2/
%G en
%F VMJ_2007_9_2_a2
A. G. Kusraev. When all separately band preserving bilinear operators are symmetric?. Vladikavkazskij matematičeskij žurnal, Tome 9 (2007) no. 2, pp. 22-25. http://geodesic.mathdoc.fr/item/VMJ_2007_9_2_a2/