When all separately band preserving bilinear operators are symmetric?
Vladikavkazskij matematičeskij žurnal, Tome 9 (2007) no. 2, pp. 22-25
Voir la notice de l'article provenant de la source Math-Net.Ru
A purely algebraic characterization of universally complete vector lattices in which all separately band preserving bilinear operators are symmetric is obtained: this class consists of universally complete vector lattices with $\sigma$-distributive Boolean algebra of bands.
@article{VMJ_2007_9_2_a2,
author = {A. G. Kusraev},
title = {When all separately band preserving bilinear operators are symmetric?},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {22--25},
publisher = {mathdoc},
volume = {9},
number = {2},
year = {2007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2007_9_2_a2/}
}
A. G. Kusraev. When all separately band preserving bilinear operators are symmetric?. Vladikavkazskij matematičeskij žurnal, Tome 9 (2007) no. 2, pp. 22-25. http://geodesic.mathdoc.fr/item/VMJ_2007_9_2_a2/