When all separately band preserving bilinear operators are symmetric?
Vladikavkazskij matematičeskij žurnal, Tome 9 (2007) no. 2, pp. 22-25 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A purely algebraic characterization of universally complete vector lattices in which all separately band preserving bilinear operators are symmetric is obtained: this class consists of universally complete vector lattices with $\sigma$-distributive Boolean algebra of bands.
@article{VMJ_2007_9_2_a2,
     author = {A. G. Kusraev},
     title = {When all separately band preserving bilinear operators are symmetric?},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {22--25},
     year = {2007},
     volume = {9},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2007_9_2_a2/}
}
TY  - JOUR
AU  - A. G. Kusraev
TI  - When all separately band preserving bilinear operators are symmetric?
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2007
SP  - 22
EP  - 25
VL  - 9
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMJ_2007_9_2_a2/
LA  - en
ID  - VMJ_2007_9_2_a2
ER  - 
%0 Journal Article
%A A. G. Kusraev
%T When all separately band preserving bilinear operators are symmetric?
%J Vladikavkazskij matematičeskij žurnal
%D 2007
%P 22-25
%V 9
%N 2
%U http://geodesic.mathdoc.fr/item/VMJ_2007_9_2_a2/
%G en
%F VMJ_2007_9_2_a2
A. G. Kusraev. When all separately band preserving bilinear operators are symmetric?. Vladikavkazskij matematičeskij žurnal, Tome 9 (2007) no. 2, pp. 22-25. http://geodesic.mathdoc.fr/item/VMJ_2007_9_2_a2/

[1] Aliprantis C. D., Burkinshaw O., Positive Operators, Acad. press, New York, 1985 | MR | Zbl

[2] Buskes G., Kusraev A. G., “Representation and extension of orthoregular bilinear operators”, Vladikavkaz Math. J., 9:1 (2007), 16–29 | MR

[3] Buskes G., van Rooij A., “Almost $f$-algebras: commutativity and the Cauchy–Schwarz inequality”, Positivity, 4 (2000), 227–231 | DOI | MR | Zbl

[4] Buskes G., van Rooij A., “Squares of Riesz spaces”, Rocky Mountain J. Math., 31:1 (2001), 45–56 | DOI | MR | Zbl

[5] Gutman A. E., “Locally one-dimensional $K$-spaces and $\sigma$-distributive Boolean algebras”, Siberian Adv. Math., 5:2 (1995), 99–121 | MR

[6] Gutman A. G., “Disjointness preserving operators”, Vector Lattices and Integral Operators, ed. S. S. Kutateladze, Kluwer, Dordrecht etc., 1996, 361–454

[7] Kusraev A. G., Dominated Operators, Kluwer, Dordrecht, 2000 | MR | Zbl

[8] Kusraev A. G., “On band preserving operators”, Vladikavkaz Math. J., 6:3 (2004), 47–58 | MR | Zbl

[9] Kusraev A. G., “Automorphisms and derivations in the algebra of complex measurable functions”, Vladikavkaz Math. J., 7:3 (2005), 45–49 | MR

[10] Kusraev A. G., “Automorphisms and derivations in universally complete complex $f$-algebras”, Siberian Math. J., 47:1 (2006), 97–107 | DOI | MR | Zbl

[11] Kusraev A. G., “Analysis, algebra, and logics in operator theory”, Complex Analysis, Operator Theory, and Mathematical Modeling, eds. Yu. F. Korobeĭnik, A. G. Kusraev, Vladikavkaz Scientific Center, Vladikavkaz, 2006, 171–204

[12] Kusraev A. G., Orthosymmetric Bilinear Operators, Preprint, IAMI VSC RAS, Vladikavkaz, 2007

[13] Kusraev A. G., Kutateladze S. S., Boolean valued analysis, Kluwer, Dordrecht, 1995 | Zbl

[14] Kusraev A. G., Tabuev S. N., “On disjointness preserving bilinear operators”, Vladikavkaz Math. J., 6:1 (2004), 58–70 | MR | Zbl

[15] Sikorski R., Boolean Algebras, Springer-Verlag, Berlin etc., 1964 | MR | Zbl

[16] Wickstead A. W., “Representation and duality of multiplication operators on Archimedean Riesz spaces”, Compositio Math., 35:3 (1977), 225–238 | MR | Zbl