One General Method in Operator Theory
Vladikavkazskij matematičeskij žurnal, Tome 7 (2005) no. 4, pp. 35-37 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An order bounded operator with target a Dedekind complete vector lattice is determined up to an orthomorphism from the kernels of its strata. Some applications to 2-disjoint operators are briefly discussed.
@article{VMJ_2005_7_4_a5,
     author = {S. S. Kutateladze},
     title = {One {General} {Method} in {Operator} {Theory}},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {35--37},
     year = {2005},
     volume = {7},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2005_7_4_a5/}
}
TY  - JOUR
AU  - S. S. Kutateladze
TI  - One General Method in Operator Theory
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2005
SP  - 35
EP  - 37
VL  - 7
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMJ_2005_7_4_a5/
LA  - en
ID  - VMJ_2005_7_4_a5
ER  - 
%0 Journal Article
%A S. S. Kutateladze
%T One General Method in Operator Theory
%J Vladikavkazskij matematičeskij žurnal
%D 2005
%P 35-37
%V 7
%N 4
%U http://geodesic.mathdoc.fr/item/VMJ_2005_7_4_a5/
%G en
%F VMJ_2005_7_4_a5
S. S. Kutateladze. One General Method in Operator Theory. Vladikavkazskij matematičeskij žurnal, Tome 7 (2005) no. 4, pp. 35-37. http://geodesic.mathdoc.fr/item/VMJ_2005_7_4_a5/

[1] Kusraev A. G., Kutateladze S. S., Boolean Valued Analysis, Kluwer Academic Publishers, Dordrecht, 1999, 322 pp. | MR | Zbl

[2] Grothendieck A., “Une caractérisation vectorielle-métrique des espaces $L^1$”, Canad. J. Math., 4 (1955), 552–561 | MR

[3] Lindenstrauss J., Wulbert D. E., “On the classification of the Banach spaces whose duals are $L_1$-spaces”, J. Funct. Anal., 4:3 (1969), 32–349 | DOI | MR

[4] Kutateladze S. S., “On differences of Riesz homomorphisms”, Sibirsk. Mat. Zh., 46:2 (2005), 390–393 | MR | Zbl

[5] Kutateladze S. S., “On Grothendieck subspaces”, Sibirsk. Mat. Zh., 46:3 (2005), 620–624 | MR

[6] Kutateladze S. S., “Choquet boundaries in $K$-spaces”, Russ. Math. Surveys, 30:4 (1975), 115–155 | DOI | MR | Zbl

[7] Bernau S. J., Huijsmans C. B., de Pagter B., “Sums of lattice homomorphisms”, Proc. Amer. Math. Soc., 115:1 (1992), 151–156 | MR | Zbl

[8] Kusraev A. G., Dominated Operators, Kluwer Academic Publishers, Dordrecht, 2000, 446 pp. | MR