Non-uniqueness of certain Hahn–Banach extensions
Vladikavkazskij matematičeskij žurnal, Tome 6 (2004) no. 1, pp. 26-28
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $f$ be a continuous linear functional defined on a subspace $M$ of a normed space $X$. If $X$ is real or complex, there are results that characterize uniqueness of continuous extensions $F$ of $f$ to $X$ for every subspace $M$ and those that apply just to $M$. If $X$ is defined over a non-Archimedean valued field $K$ and the norm also satisfies the strong triangle inequality, the Hahn–Banach theorem holds for all subspaces $M$ of $X$ if and only if $K$ is spherically complete and it is well-known that Hahn–Banach extensions are never unique in this context. We give a different proof of non-uniqueness here that is interesting for its own sake and may point a direction in which further investigation would be fruitful.
@article{VMJ_2004_6_1_a3,
author = {E. Beckenstein and L. Narici},
title = {Non-uniqueness of certain {Hahn{\textendash}Banach} extensions},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {26--28},
year = {2004},
volume = {6},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2004_6_1_a3/}
}
E. Beckenstein; L. Narici. Non-uniqueness of certain Hahn–Banach extensions. Vladikavkazskij matematičeskij žurnal, Tome 6 (2004) no. 1, pp. 26-28. http://geodesic.mathdoc.fr/item/VMJ_2004_6_1_a3/
[1] Herrero P., El teorema de Hahn–Banach: historia, versiones analíticas, geometría y aplicaciones. La propiedad de extensión, Universidad de Murcia (Spain), Murcia, 2003
[2] Monna A. F., “Remarks on some problems in linear topological spaces over fields with non-Archimedean valuation”, Indag. Math., 30 (1968), 484–496 | MR
[3] Narici L., Beckenstein E., Topological vector spaces, Dekker, New York, 1985 | MR | Zbl
[4] Narici L., Beckenstein E., Bachman G., Functional analysis and valuation theory, Dekker, New York, 1971 | MR | Zbl
[5] van Rooij A., Non-Archimedean functional analysis, Dekker, New York, 1978 | MR | Zbl