Mots-clés : Levenberg-Marquardt algorithm
@article{VKAM_2024_49_4_a9,
author = {D. A. Tvyordyj and E. O. Makarov},
title = {Some aspects of the implementation of the {PRPHMM} 1.0 software package for refining the parameters of hereditary mathematical models of radon transfer in a storage chamber},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {135--156},
year = {2024},
volume = {49},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2024_49_4_a9/}
}
TY - JOUR AU - D. A. Tvyordyj AU - E. O. Makarov TI - Some aspects of the implementation of the PRPHMM 1.0 software package for refining the parameters of hereditary mathematical models of radon transfer in a storage chamber JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2024 SP - 135 EP - 156 VL - 49 IS - 4 UR - http://geodesic.mathdoc.fr/item/VKAM_2024_49_4_a9/ LA - ru ID - VKAM_2024_49_4_a9 ER -
%0 Journal Article %A D. A. Tvyordyj %A E. O. Makarov %T Some aspects of the implementation of the PRPHMM 1.0 software package for refining the parameters of hereditary mathematical models of radon transfer in a storage chamber %J Vestnik KRAUNC. Fiziko-matematičeskie nauki %D 2024 %P 135-156 %V 49 %N 4 %U http://geodesic.mathdoc.fr/item/VKAM_2024_49_4_a9/ %G ru %F VKAM_2024_49_4_a9
D. A. Tvyordyj; E. O. Makarov. Some aspects of the implementation of the PRPHMM 1.0 software package for refining the parameters of hereditary mathematical models of radon transfer in a storage chamber. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 49 (2024) no. 4, pp. 135-156. http://geodesic.mathdoc.fr/item/VKAM_2024_49_4_a9/
[1] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, Moskva, 2003, 272 pp.
[2] Uchaikin V. V., Fractional Derivatives for Physicists and Engineers, Background and Theory, v. I, Springer, Berlin/Heidelberg, 2013, 373 pp. | MR | Zbl
[3] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, 1st ed., Elsevier Science Limited, Amsterdam, 2006, 523 pp. | MR
[4] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987, 688 pp.
[5] Tverdyi D. A., Parovik R. I., “Application of the Fractional Riccati Equation for Mathematical Modeling of Dynamic Processes with Saturation and Memory Effect”, Fractal and Fractional, 6:3 (2022), 163 DOI: 10.3390/fractalfract6030163 | DOI
[6] Tverdyi D. A., Parovik R. I., “Fractional Riccati equation to model the dynamics of COVID-19 coronavirus infection”, Journal of Physics: Conference Series, 2094 (2021), 032042 DOI: 10.1088/1742-6596/2094/3/032042 | DOI
[7] Tverdyi D. A., Makarov E. O., Parovik R. I., “Hereditary Mathematical Model of the Dynamics of Radon Accumulation in the Accumulation Chamber”, Mathematics, 11:4 (2023), 850 DOI: 10.3390/math11040850 | DOI | MR
[8] Volterra V., “Sur les équations intégro-différentielles et leurs applications”, Acta Mathematica, 35:1 (1912), 295–356 DOI: 10.1007/BF02418820 | DOI | MR
[9] Parovik R. I. Tverdyi D. A., “Some Aspects of Numerical Analysis for a Model Nonlinear Fractional Variable Order Equation”, Mathematical and Computational Applications, 26:3 (2021), 55 DOI: 10.3390/mca26030055 | DOI | MR
[10] Tverdyi D. A., Parovik R. I., “Investigation of Finite-Difference Schemes for the Numerical Solution of a Fractional Nonlinear Equation”, Fractal and Fractional, 6:1 (2022), 23 DOI: 10.3390/fractalfract6010023 | DOI
[11] Tverdyi D. A., Makarov E. O., Parovik R. I., “Identifikatsiya parametrov matematicheskoi $\alpha$-modeli perenosa radona v nakopitelnoi kamere po dannym punkta Karymshina na Kamchatke”, Vestnik KRAUNTs. Fiz.-mat. nauki, 48:3 (2024), 95-119 DOI: 10.26117/2079- 6641-2024-48-3-95-119 | DOI
[12] Tarantola A., Inverse problem theory: methods for data fitting and model parameter estimation, Elsevier Science Pub. Co., Amsterdam and New York, 1987, 613 pp. | MR | Zbl
[13] Lailly P., “The seismic inverse problem as a sequence of before stack migrations”, Conference on Inverse Scattering, Theory and application, 1983, 206–220 | MR
[14] Firstov P. P., Makarov E. O., Dinamika podpochvennogo radona na Kamchatke i silnye zemletryaseniya, Kamchatskii gosudarstvennyi universitet im. Vitusa Beringa, Petropavlovsk-Kamchatskii, 2018, 148 pp.
[15] Firstov P. P., Rudakov V. P., “Rezultaty registratsii podpochvennogo radona v 1997–2000 gg. na Petropavlovsk-Kamchatskom geodinamicheskom poligone”, Vulkanologiya i seismologiya, 2003, no. 1, 26–41
[16] Utkin V. I., Yurkov A. K., “Radon as a tracer of tectonic movements”, Russian Geology and Geophysics, 51:2 (2010), 220–227 DOI: 10.1016/j.rgg.2009.12.022 | DOI
[17] Biryulin S. V., Kozlova I. A., Yurkov A. K., “Issledovanie informativnosti ob'emnoi aktivnosti pochvennogo radona pri podgotovke i realizatsii tektonicheskikh zemletryasenii na primere Yuzhno-Kurilskogo regiona”, Vestnik KRAUNTs. Nauki o Zemle, 4:44 (2019), 73–83 DOI: 10.31431/1816-5524-2019-4-44-73-83
[18] Gerasimov A. N., “Obobschenie zakonov lineinogo deformirovaniya i ikh primenenie k zadacham vnutrennego treniya”, AN SSR. Prikladnaya matematika i mekhanika, 44:6 (1948), 62-78
[19] Caputo M., “Linear models of dissipation whose Q is almost frequency independent – II”, Geophysical Journal International, 13:5 (1967), 529–539 DOI: 10.1111/j.1365-246X.1967.tb02303.x | DOI
[20] Dennis J. E., Robert Jr., Schnabel B., Numerical methods for unconstrained optimization and nonlinear equations, SIAM, Philadelphia, 1996, 394 pp. | MR | Zbl
[21] Gill P. E., Murray W., Wright M. H., Practical Optimization, SIAM, Philadelphia, 2019, 421 pp. | MR
[22] Levenberg K., “A method for the solution of certain non-linear problems in least squares”, Quarterly of applied mathematics, 2:2 (1944), 164–168 DOI: 10.1090/qam/10666 | DOI | MR | Zbl
[23] Marquardt D. W., “An algorithm for least-squares estimation of nonlinear parameters”, Journal of the society for Industrial and Applied Mathematics, 11:2 (1963), 431–441 DOI: 10.1137/0111030 | DOI | MR | Zbl
[24] Tverdyi D. A., Parovik R. I., “O zadache optimizatsii dlya opredeleniya vida funktsionalnoi zavisimosti peremennogo poryadka drobnoi proizvodnoi tipa Gerasimova-Kaputo”, Vestnik KRAUNTs. Fiziko-matematicheskie nauki, 47:2 (2024), 35–57 DOI: 10.26117/2079-6641-2024-47-2-35-57 | DOI
[25] Ford W., Numerical linear algebra with applications: Using MATLAB, 1st edition, Academic Press, Massachusetts, 2014, 628 pp. | MR