Some aspects of the implementation of the PRPHMM 1.0 software package for refining the parameters of hereditary mathematical models of radon transfer in a storage chamber
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 49 (2024) no. 4, pp. 135-156 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Mathematical models of some dynamic processes can be significantly enhanced by using derivatives and integrals of non-integer order in them, taking into account effects that cannot be described by ordinary derivatives. For example, by using fractional Gerasimov- Caputo derivatives of constant and variable order, it is possible to take into account the memory effect in the process model, and the order of the derivative will be related to the intensity of the process. In particular, the authors have previously developed an hereditary $\alpha$-model of the volumetric activity of radon, where the parameter $\alpha$ is related to the permeability of the medium. However, the question arises about determination of optimal values of both $\alpha$ and other parameters of the model. To solve the problem, it is possible to solve the inverse problem, a common type of problem in many scientific fields, where it is necessary to determine the values of model parameters from observed data, but it is impossible to make direct measurements of these parameters. The need for such an approach often arises when working with geological data. The article describes the software implementation of the PRPHMM 1.0 software package which can clarifying optimal values of hereditary mathematical models based on the Gerasimov–Caputo derivative. The Levenberg-Marquardt unconditional Newtonian optimisation algorithm is adapted and implemented in MATLAB language. Subroutines for reading, processing and visualisation of experimental and model data are implemented. A test case solving the inverse problem for the hereditary $\alpha$-model for the parameters $\alpha$ and $\lambda_0$-air exchange coefficient on the basis of experimental radon monitoring data is presented. It is shown that PRPHMM 1.0 allows for the clarify of parameter values close to the optimum values for the hereditary mathematical models.
Keywords: мathematical modeling, fractional derivatives, Gerasimov-Caputo, memory effect, nonlocality, nonlinear equations, inverse problems, unconditional optimization, MATLAB.
Mots-clés : Levenberg-Marquardt algorithm
@article{VKAM_2024_49_4_a9,
     author = {D. A. Tvyordyj and E. O. Makarov},
     title = {Some aspects of the implementation of the {PRPHMM} 1.0 software package for refining the parameters of hereditary mathematical models of radon transfer in a storage chamber},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {135--156},
     year = {2024},
     volume = {49},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2024_49_4_a9/}
}
TY  - JOUR
AU  - D. A. Tvyordyj
AU  - E. O. Makarov
TI  - Some aspects of the implementation of the PRPHMM 1.0 software package for refining the parameters of hereditary mathematical models of radon transfer in a storage chamber
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2024
SP  - 135
EP  - 156
VL  - 49
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VKAM_2024_49_4_a9/
LA  - ru
ID  - VKAM_2024_49_4_a9
ER  - 
%0 Journal Article
%A D. A. Tvyordyj
%A E. O. Makarov
%T Some aspects of the implementation of the PRPHMM 1.0 software package for refining the parameters of hereditary mathematical models of radon transfer in a storage chamber
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2024
%P 135-156
%V 49
%N 4
%U http://geodesic.mathdoc.fr/item/VKAM_2024_49_4_a9/
%G ru
%F VKAM_2024_49_4_a9
D. A. Tvyordyj; E. O. Makarov. Some aspects of the implementation of the PRPHMM 1.0 software package for refining the parameters of hereditary mathematical models of radon transfer in a storage chamber. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 49 (2024) no. 4, pp. 135-156. http://geodesic.mathdoc.fr/item/VKAM_2024_49_4_a9/

[1] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, Moskva, 2003, 272 pp.

[2] Uchaikin V. V., Fractional Derivatives for Physicists and Engineers, Background and Theory, v. I, Springer, Berlin/Heidelberg, 2013, 373 pp. | MR | Zbl

[3] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, 1st ed., Elsevier Science Limited, Amsterdam, 2006, 523 pp. | MR

[4] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987, 688 pp.

[5] Tverdyi D. A., Parovik R. I., “Application of the Fractional Riccati Equation for Mathematical Modeling of Dynamic Processes with Saturation and Memory Effect”, Fractal and Fractional, 6:3 (2022), 163 DOI: 10.3390/fractalfract6030163 | DOI

[6] Tverdyi D. A., Parovik R. I., “Fractional Riccati equation to model the dynamics of COVID-19 coronavirus infection”, Journal of Physics: Conference Series, 2094 (2021), 032042 DOI: 10.1088/1742-6596/2094/3/032042 | DOI

[7] Tverdyi D. A., Makarov E. O., Parovik R. I., “Hereditary Mathematical Model of the Dynamics of Radon Accumulation in the Accumulation Chamber”, Mathematics, 11:4 (2023), 850 DOI: 10.3390/math11040850 | DOI | MR

[8] Volterra V., “Sur les équations intégro-différentielles et leurs applications”, Acta Mathematica, 35:1 (1912), 295–356 DOI: 10.1007/BF02418820 | DOI | MR

[9] Parovik R. I. Tverdyi D. A., “Some Aspects of Numerical Analysis for a Model Nonlinear Fractional Variable Order Equation”, Mathematical and Computational Applications, 26:3 (2021), 55 DOI: 10.3390/mca26030055 | DOI | MR

[10] Tverdyi D. A., Parovik R. I., “Investigation of Finite-Difference Schemes for the Numerical Solution of a Fractional Nonlinear Equation”, Fractal and Fractional, 6:1 (2022), 23 DOI: 10.3390/fractalfract6010023 | DOI

[11] Tverdyi D. A., Makarov E. O., Parovik R. I., “Identifikatsiya parametrov matematicheskoi $\alpha$-modeli perenosa radona v nakopitelnoi kamere po dannym punkta Karymshina na Kamchatke”, Vestnik KRAUNTs. Fiz.-mat. nauki, 48:3 (2024), 95-119 DOI: 10.26117/2079- 6641-2024-48-3-95-119 | DOI

[12] Tarantola A., Inverse problem theory: methods for data fitting and model parameter estimation, Elsevier Science Pub. Co., Amsterdam and New York, 1987, 613 pp. | MR | Zbl

[13] Lailly P., “The seismic inverse problem as a sequence of before stack migrations”, Conference on Inverse Scattering, Theory and application, 1983, 206–220 | MR

[14] Firstov P. P., Makarov E. O., Dinamika podpochvennogo radona na Kamchatke i silnye zemletryaseniya, Kamchatskii gosudarstvennyi universitet im. Vitusa Beringa, Petropavlovsk-Kamchatskii, 2018, 148 pp.

[15] Firstov P. P., Rudakov V. P., “Rezultaty registratsii podpochvennogo radona v 1997–2000 gg. na Petropavlovsk-Kamchatskom geodinamicheskom poligone”, Vulkanologiya i seismologiya, 2003, no. 1, 26–41

[16] Utkin V. I., Yurkov A. K., “Radon as a tracer of tectonic movements”, Russian Geology and Geophysics, 51:2 (2010), 220–227 DOI: 10.1016/j.rgg.2009.12.022 | DOI

[17] Biryulin S. V., Kozlova I. A., Yurkov A. K., “Issledovanie informativnosti ob'emnoi aktivnosti pochvennogo radona pri podgotovke i realizatsii tektonicheskikh zemletryasenii na primere Yuzhno-Kurilskogo regiona”, Vestnik KRAUNTs. Nauki o Zemle, 4:44 (2019), 73–83 DOI: 10.31431/1816-5524-2019-4-44-73-83

[18] Gerasimov A. N., “Obobschenie zakonov lineinogo deformirovaniya i ikh primenenie k zadacham vnutrennego treniya”, AN SSR. Prikladnaya matematika i mekhanika, 44:6 (1948), 62-78

[19] Caputo M., “Linear models of dissipation whose Q is almost frequency independent – II”, Geophysical Journal International, 13:5 (1967), 529–539 DOI: 10.1111/j.1365-246X.1967.tb02303.x | DOI

[20] Dennis J. E., Robert Jr., Schnabel B., Numerical methods for unconstrained optimization and nonlinear equations, SIAM, Philadelphia, 1996, 394 pp. | MR | Zbl

[21] Gill P. E., Murray W., Wright M. H., Practical Optimization, SIAM, Philadelphia, 2019, 421 pp. | MR

[22] Levenberg K., “A method for the solution of certain non-linear problems in least squares”, Quarterly of applied mathematics, 2:2 (1944), 164–168 DOI: 10.1090/qam/10666 | DOI | MR | Zbl

[23] Marquardt D. W., “An algorithm for least-squares estimation of nonlinear parameters”, Journal of the society for Industrial and Applied Mathematics, 11:2 (1963), 431–441 DOI: 10.1137/0111030 | DOI | MR | Zbl

[24] Tverdyi D. A., Parovik R. I., “O zadache optimizatsii dlya opredeleniya vida funktsionalnoi zavisimosti peremennogo poryadka drobnoi proizvodnoi tipa Gerasimova-Kaputo”, Vestnik KRAUNTs. Fiziko-matematicheskie nauki, 47:2 (2024), 35–57 DOI: 10.26117/2079-6641-2024-47-2-35-57 | DOI

[25] Ford W., Numerical linear algebra with applications: Using MATLAB, 1st edition, Academic Press, Massachusetts, 2014, 628 pp. | MR