Algorithm for extracting an artificial whistler signal in a spectrogram using the PyCharm integrated application development environment
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 49 (2024) no. 4, pp. 99-111 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper proposes an algorithm for identifying the trace of an artificial whistling atmospheric signal (whistle) in a spectrogram, implemented in Python in the PyCharm 2024.1 integrated development environment. The algorithm allows you to identify the whistler trace by setting a certain threshold value (filter). The filter takes into account the signal intensity in the spectrum, the standard deviation of values from the mean, and a certain multiplier that allows you to exclude noise and identify only the most significant peaks in the signal. In the algorithm, using a mask based on the filter, it is possible to obtain an array of frequencies for the trace of an artificial whistler. The computer program allows you to save the resulting array in a text file, which can be used for further analysis in various spreadsheet processors, as well as build whistler trace graphs for visual research. The article tested the adequacy of the algorithm using the example of calculating the dispersion coefficient. It was shown that the algorithm gives good results.
Keywords: artificial whistler, trace, filter, mask, Python, PyCharm.
Mots-clés : spectrogram
@article{VKAM_2024_49_4_a6,
     author = {L. S. Marchenko},
     title = {Algorithm for extracting an artificial whistler signal in a spectrogram using the {PyCharm} integrated application development environment},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {99--111},
     year = {2024},
     volume = {49},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2024_49_4_a6/}
}
TY  - JOUR
AU  - L. S. Marchenko
TI  - Algorithm for extracting an artificial whistler signal in a spectrogram using the PyCharm integrated application development environment
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2024
SP  - 99
EP  - 111
VL  - 49
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VKAM_2024_49_4_a6/
LA  - ru
ID  - VKAM_2024_49_4_a6
ER  - 
%0 Journal Article
%A L. S. Marchenko
%T Algorithm for extracting an artificial whistler signal in a spectrogram using the PyCharm integrated application development environment
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2024
%P 99-111
%V 49
%N 4
%U http://geodesic.mathdoc.fr/item/VKAM_2024_49_4_a6/
%G ru
%F VKAM_2024_49_4_a6
L. S. Marchenko. Algorithm for extracting an artificial whistler signal in a spectrogram using the PyCharm integrated application development environment. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 49 (2024) no. 4, pp. 99-111. http://geodesic.mathdoc.fr/item/VKAM_2024_49_4_a6/

[1] Artekha S. N., Belyan A. V., “On the role of electromagnetic phenomena in some atmospheric processes”, Nonlinear Processes in Geophysics, 20:3 (2013), 293-304 DOI:10.5194/npg-20-293-2013 | DOI

[2] Mahmood N., Edminister J.A., Schaum's Outline of Electromagnetics, McGraw Hill, New York, 2019

[3] Lichtenberger J., Ferencz C., Bodnár L. et al., “Automatic whistler detector and analyzer system: Automatic whistler detector”, Geophys. Res., 113 (2008) | DOI

[4] Koronczay D., Lichtenberger J., Clilverd M. A. et al., “The source regions of whistlers”, Journal of Geophysical Research: Space-Physics, 124 (2019), 5082–5096 | DOI

[5] Li W., Shen X.-C., Menietti J. D. et al., “Global distribution of whistler mode waves in Jovian inner magnetosphere”, Geophysical Research Letters, 47:15. (2020) DOI: 10.1029/ 2020GL088198 | DOI

[6] Morris P.J., Bohdan A., Weidl M. S. et al., “Pre-acceleration in the electron foreshock. II. oblique whistler waves”, The Astrophysical Journal, 944:1 (2023) DOI: 10.3847/1538-4357/acaec8 | DOI

[7] Sonwalkar V. S., Reddy A., “Specularly reflected whistler: A low-latitude channel to couple lightning energy to the magnetosphere”, Science Advances, 10.:33 (2024) DOI: 10.1126/sciadv.ado2657 | DOI

[8] Xiang T., Liu M., He S., Wang X., Zhou C., “Automatic segmentation model and parameter extraction algorithm for lightning whistlers”, Radio Science, 59:11 (2024) DOI: 10.1029/2024RS007984 | DOI

[9] Cherneva N. V., Vodinchar G. M., Sivokon V. P. i dr., “Korrelyatsionnyi analiz potokov svistyaschikh atmosferikov i grozovykh razryadov”, Vestnik KRAUNTs. Fiziko-matematicheskie nauki, 7:2 (2013), 59–67 DOI: 10.18454/2079-6641-2013-7-2-59-67

[10] Sivokon V. P., Bogdanov V. V., Druzhin G. I. i dr., “Modulyatsiya vistlerov”, Geomagnetizm i aeronomiya, 54:6 (2014), 851–851 DOI: 10.7868/S0016794014060182 | DOI

[11] Malysh E. A., “Algoritm dlya avtomaticheskogo raspoznavaniya svistyaschikh atmosferikov v rezhime realnogo vremeni”, Vestnik KRAUNTs. Fiziko-matematicheskie nauki, 2015, no. 2(11), 82-87 DOI: 10.18454/2079-6641-2015-11-2-82-87

[12] Malkin E. I., Kazakov E. A., Sannikov D. V i dr., “Statisticheskaya svyaz mezhdu vistlerami i spraitami po dannym AWDANET i WWLLN”, Vestnik KRAUNTs. Fiziko-matematicheskie nauki, 41:4 (2022), 178-190 DOI: 10.26117/2079-6641-2022-41-4-178-190

[13] Storey L. R. O., “An investigation of whistling atmospherics”, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 246:908 (1953), 113-141

[14] Gershman B. N., Korobkov Yu. S., “K teorii rasprostraneniya svistyaschikh atmosferikov”, Izvestiya vuzov. Seriya Radiofizika, 1:2 (1958), 51-58

[15] Gershman B. N., Ugarov V. A., “Rasprostranenie i generatsiya nizkochastotnykh elektromagnitnykh voln v verkhnei atmosfere”, Uspekhi fizicheskikh nauk, 72:2 (1960), 235-271 | DOI

[16] Shagimuratov I. I., Variatsii elektronnoi kontsentratsii v plazmosfere po dannym svistyaschikh atmosferikov, spetsialnost 01.04.12, M., 1985, 189 pp.

[17] Marchenko L. S. Parovik R.I., “Modelirovanie iskusstvennykh vistlerov v srede PySharm”, Izvestiya Kabardino-Balkarskogo nauchnogo tsentra RAN, 26:5 (2024), 53-63 DOI: 10.35330/1991-6639-2024-26-5-53-63

[18] Van Horn, B. M. II, Nguyen Q., Hands-On Application Development with PyCharm: Build Applications like a Pro with the Ultimate Python Development Tool, Packt Publishing Ltd., Birmingham, UK, 2023

[19] Talab A. M. A. et al., “Detection crack in image using Otsu method and multiple filtering in image processing techniques”, Optik, 127:3 (2016), 1030-1033 | DOI

[20] Mathur N., Mathur S., Mathur D., “A novel approach to improve sobel edge detector”, Procedia Computer Science, 93 (2016), 431-438 | DOI | MR

[21] Yan X., Li Y., “A method of lane edge detection based on Canny algorithm”, IEEE, 2017, 2120-2124 pp.